Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
ACS Chem Neurosci ; 13(19): 2821-2828, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36122168

ABSTRACT

Diabetes mellitus type 2 (T2D) complications include brain damage which increases the risk of neurodegenerative diseases and dementia. An early manifestation of neurodegeneration is olfactory dysfunction (OD), which is also presented in diabetic patients. Previously, we demonstrated that OD correlates with IL-1ß and miR-146a overexpression in the olfactory bulb (OB) on a T2D rodent model, suggesting the participation of inflammation on OD. Here, we found that OD persists on a long-term T2D condition after the downregulation of IL-1ß. Remarkably, OD was associated with the increased expression of the dopaminergic neuronal marker tyrosine hydroxylase, ERK1/2 phosphorylation, and reduced neuronal activation on the OB of diabetic rats, suggesting the participation of the dopaminergic tone on the OD derived from T2D. Dopaminergic neurons are susceptible in neurodegenerative diseases such as Parkinson's disease; therefore further studies must be performed to completely elucidate the participation of these neurons and ERK1/2 signaling on olfactory impairment.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , MicroRNAs , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Dopaminergic Neurons/metabolism , MAP Kinase Signaling System , MicroRNAs/metabolism , Mitogen-Activated Protein Kinase 1 , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/pharmacology , Olfactory Bulb , Phosphorylation , Rats , Tyrosine 3-Monooxygenase/metabolism
3.
Cell Mol Neurobiol ; 42(6): 1727-1743, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33813677

ABSTRACT

The olfactory system is responsible for the reception, integration and interpretation of odors. However, in the last years, it has been discovered that the olfactory perception of food can rapidly modulate the activity of hypothalamic neurons involved in the regulation of energy balance. Conversely, the hormonal signals derived from changes in the metabolic status of the body can also change the sensitivity of the olfactory system, suggesting that the bidirectional relationship established between the olfactory and the hypothalamic systems is key for the maintenance of metabolic homeostasis. In the first part of this review, we describe the possible mechanisms and anatomical pathways involved in the modulation of energy balance regulated by the olfactory system. Hence, we propose a model to explain its implication in the maintenance of the metabolic homeostasis of the organism. In the second part, we discuss how the olfactory system could be involved in the development of metabolic diseases such as obesity and type two diabetes and, finally, we propose the use of intranasal therapies aimed to regulate and improve the activity of the olfactory system that in turn will be able to control the neuronal activity of hypothalamic centers to prevent or ameliorate metabolic diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolic Diseases , Diabetes Mellitus, Type 2/metabolism , Energy Metabolism/physiology , Humans , Hypothalamus/metabolism , Metabolic Diseases/metabolism , Obesity
5.
BMC Neurosci ; 22(1): 14, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33653273

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is characterized by cognitive impairment that eventually develops into dementia. Amyloid-beta (Aß) accumulation is a widely described hallmark in AD, and has been reported to cause olfactory dysfunction, a condition considered an early marker of the disease associated with injuries in the olfactory bulb (OB), the hippocampus (HIPP) and other odor-related cortexes. Adiponectin (APN) is an adipokine with neuroprotective effects. Studies have demonstrated that APN administration decreases Aß neurotoxicity and Tau hyperphosphorylation in the HIPP, reducing cognitive impairment. However, there are no studies regarding the neuroprotective effects of APN in the olfactory dysfunction observed in the Aß rat model. The aim of the present study is to determine whether the intracerebroventricular (i.c.v) administration of APN prevents the early olfactory dysfunction in an i.c.v Amyloid-beta1-42 (Aß1-42) rat model. Hence, we evaluated olfactory function by using a battery of olfactory tests aimed to assess olfactory memory, discrimination and detection in the Aß rat model treated with APN. In addition, we determined the number of cells expressing the neuronal nuclei (NeuN), as well as the number of microglial cells by using the ionized calcium-binding adapter molecule 1 (Iba-1) marker in the OB and, CA1, CA3, hilus and dentate gyrus (DG) in the HIPP. Finally, we determined Arginase-1 expression in both nuclei through Western blot. RESULTS: We observed that the i.c.v injection of Aß decreased olfactory function, which was prevented by the i.c.v administration of APN. In accordance with the olfactory impairment observed in i.c.v Aß-treated rats, we observed a decrease in NeuN expressing cells in the glomerular layer of the OB, which was also prevented with the i.c.v APN. Furthermore, we observed an increase of Iba-1 cells in CA1, and DG in the HIPP of the Aß rats, which was prevented by the APN treatment. CONCLUSION: The present study describes the olfactory impairment of Aß treated rats and evidences the protective role that APN plays in the brain, by preventing the olfactory impairment induced by Aß1-42. These results may lead to APN-based pharmacological therapies aimed to ameliorate AD neurotoxic effects.


Subject(s)
Adiponectin/pharmacology , Alzheimer Disease , Brain/drug effects , Neuroprotective Agents/pharmacology , Olfaction Disorders , Amyloid beta-Peptides/toxicity , Animals , Disease Models, Animal , Injections, Intraventricular , Male , Olfaction Disorders/etiology , Rats , Rats, Wistar
6.
Neurochem Res ; 45(8): 1781-1790, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32405762

ABSTRACT

Type 2 diabetes (T2D) is associated with cognitive decline and dementia. Both neurodegenerative conditions are characterized by olfactory dysfunction (OD) which is also observed in diabetic patients. Diabetes and neurodegeneration display altered miRNAs expression; therefore, the study of miRNAs in the diabetic olfactory system is important in order to know the mechanisms involved in neurodegeneration induced by T2D. In this work we evaluated the expression of miRs206, 451, 146a and 34a in the olfactory bulb (OB) of T2D rats and its association with OD. T2D induction was performed by administering streptozotocin to neonatal rats. The olfactory function was evaluated after reaching the adulthood by employing the buried pellet and social recognition tests. After 18 weeks, animals were sacrificed to determinate miRNAs and protein expression in the OB. T2D animals showed a significant increase in the latency to find the odor stimulus in the buried pellet test and a significant reduction in the interest to investigate the novel juvenile subjects in the social recognition test, indicating OD. In miRNAs analysis we observed a significant increase of miR-146a expression in the OB of T2D rats when compared to controls. This increase in miR-146a correlated with the overexpression of IL-1ß in the OB of T2D rats. The present results showed that OD in T2D rats is associated with IL-1ß mediated-inflammation and miR-146a overexpression, suggesting that high levels of IL-1ß could trigger miR-146a upregulation as a negative feedback of the inflammatory response in the OB of T2D rats.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Inflammation/physiopathology , MicroRNAs/metabolism , Olfaction Disorders/physiopathology , Olfactory Bulb/metabolism , Animals , Inflammation/epidemiology , Interleukin-1beta/metabolism , Male , Olfaction Disorders/epidemiology , Rats, Wistar
7.
Epilepsy Res ; 157: 106188, 2019 11.
Article in English | MEDLINE | ID: mdl-31470144

ABSTRACT

Mesial temporal lobe epilepsy (mTLE) is the most common epilepsy syndrome which will eventually become pharmacologically intractable partial-onset seizures. Regulation of gene expression is an important process in the development of this pathology where microRNAs (miRs) are involved. The role of miRs has been widely studied in the hippocampus of rodents and patients. However, little is known about its differential expression in other brain regions such as the neocortex. The temporal neocortex plays a major role in the generation and propagation of seizures and in synaptic disruption, impairing the excitatory and inhibitory balance. Therefore, we assessed the expression of miR-146a, 34a, 1260, 1275, 1298, 451, 132 and 142-3p in the neocortex of 12 patients with mTLE and compared them with miRs expression found in 10 control samples. We noted a significant decrease in the expression of miR-34a and 1298 in patients with mTLE and a -1.49 to -7.0 fold change respectively compared with controls. Conversely, we observed a significant increase in the expression of miR-451, 1260 and 1275 in patients with a 25.67, 4.09 and a 7.07 fold change respectively compared to controls. Using Pearson correlation, we explored the association between the clinical features of mTLE patients and controls with miRs expression. In the control group we found a significant correlation only with age and miR-146a expression (r = 0.733). The analysis of mTLE patients showed a negative correlation between expression of miR-1260 (r = -0.666) and miR-1298 (r = -0.651) and age. Furthermore, we found a positive correlation between miR-146a expression with seizure frequency (r = 0.803) and a positive correlation between miR-146a and 451 expression with number of antiepileptic drugs used for presurgical treatment (r = 0.715 and 0.611 respectively), thus suggesting a positive correlation with disease severity. These miRs are associated with biological processes such as apoptosis, drug resistance, inflammation, inhibitory and excitatory synaptic transmission, axonal guidance and signaling of neurotrophins. Therefore, deepening our understanding of the targets involved in these miRs will help to elucidate the role of the neocortex in epilepsy.


Subject(s)
Epilepsy, Temporal Lobe/metabolism , MicroRNAs/metabolism , Neocortex/metabolism , Adolescent , Adult , Female , Gene Expression , Humans , Male , MicroRNAs/genetics , Middle Aged , Young Adult
8.
IUBMB Life ; 65(12): 1035-42, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24273150

ABSTRACT

Calcium-sensing receptor (CaSR) contributes to maintain homeostatic levels of extracellular calcium. In addition, CaSR controls other cellular activities such as proliferation and migration, particularly in cells not related to extracellular calcium homeostasis, potentially by cross-talking with parallel signaling pathways. Here we report that CaSR attenuates transforming growth factor-ß (TGF-ß)-signaling in hepatic C9 cells and in transfected HEK293 cells. Wild type CaSR interferes with TGF-ß-dependent Smad2 phosphorylation and induces its proteasomal degradation, resulting in a decrease of TGF-ß-dependent transcriptional activity, whereas an inactivating CaSR mutant does not transduce an inhibitory effect of extracellular calcium on TGF-ß signaling. Attenuation of TGF-ß signaling in response to extracellular calcium is linked to Rab11-dependent CaSR-trafficking with the intervention of CaSR carboxyl-terminal tail. Our data suggest that CaSR might regulate TGF-ß-dependent cellular responses mediated by TGF-ß signaling inhibition.


Subject(s)
Protein Processing, Post-Translational , Receptors, Calcium-Sensing/metabolism , Signal Transduction , Smad2 Protein/metabolism , Transforming Growth Factor beta1/physiology , Animals , HEK293 Cells , Humans , Parathyroid Hormone-Related Protein/metabolism , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Protein Transport , Proteolysis , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...