Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Surg Res ; 9: 91, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25288055

ABSTRACT

BACKGROUND: Metal-on-metal prostheses undergo wear and corrosion, releasing soluble ions and wear particles into the surrounding environment. Reports described early failures of the metal-on-metal prostheses, with histologic features similar to a Type IV immune response. Mechanisms by which metal wear products and metal ion causing this reaction are not completely understood, and the effects of metal ions on osteocytes, which represent more than 95% of all the bone cells, have not been also studied. We hypothesized that soluble metal ions released from the cobalt-chromium-molybdenum (Co-Cr-Mo) prosthesis may have cytotoxic effect on osteocytes. METHODS: MLO-Y4 osteocytes were treated with various metal ion solutions for 24 and 48 h. The effect of ion treatment on cytotoxicity was assessed by WST-1 reagents and cell death ELISA. Morphological changes were analyzed by a phase-contrast microscope or fluorescent microscope using Hoechst 33342 and propidium iodine staining. RESULTS: Cr and Mo ions did not cause cell death under 0.50 mM, highest concentration studied, whereas Co and Ni ions had significant cytotoxic effect on MLO-Y4 cells at concentrations grater than 0.10 mM and at 0.50 mM, respectively, in a dose-dependent manner. According to the ELISA data, osteocytes treated with Co ions were more susceptible to necrotic than apoptotic cell death, while Ni ions caused osteocyte apoptosis. The morphological assays show that cells treated with Co and Ni ions at high concentration were fewer in number and rounded. In addition, fluorescent images showed a marked reduction in live cells and an increase in dead osteocytes treated with Co and Ni ions at high concentration. CONCLUSIONS: Metal ions released from metal-on-metal bearing surfaces have potentially cytotoxic effects on MLO-Y4 osteocytes, in vitro.


Subject(s)
Cobalt/toxicity , Nickel/toxicity , Osteocytes/drug effects , Animals , Cell Death/drug effects , Cell Line , Chromium/toxicity , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Mice , Mice, Transgenic , Microscopy, Fluorescence , Microscopy, Phase-Contrast , Molybdenum/toxicity
2.
J Orthop Res ; 29(12): 1867-73, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21557302

ABSTRACT

Aseptic loosening is the devastating long term complication of total hip arthroplasty and orthopedic implant debris has been shown to trigger an intense inflammatory reaction leading to resorption of the bone matrix. Inflammatory cytokines, such as tumor necrosis factor-α (TNFα), have been implicated in this process and osteocytes may play a role in its production. We previously demonstrated that cobalt-chromium-molybdenum (CoCrMo) particles upregulate TNFα production by MLO-Y4 osteocytes in vitro, but the underlying mechanism has not been elucidated. Based on previous studies by others, we hypothesized that the calcineurin-nuclear factor of activated T cells (NFAT) pathway mediates CoCrMo particle-induced TNFα production in MLO-Y4 osteocytes. MLO-Y4 osteocytes exposed to CoCrMo particle treatment resulted in a rapid and significant increase in calcineurin activity. We also demonstrate that CoCrMo particle-induced upregulation of TNFα is reduced to control levels with calcineurin-NFAT inhibitors and this was also confirmed at mRNA level. Moreover, we demonstrate the localization of NFATs in MLO-Y4 osteocytes and that NFAT1 and 2 translocate to the nucleus upon CoCrMo particle treatment. Our results suggest that calcineurin-NFAT signaling is involved in TNFα production by MLO-Y4 osteocytes after CoCrMo particle treatment.


Subject(s)
Calcineurin/metabolism , NFATC Transcription Factors/metabolism , Osteocytes/drug effects , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Vitallium/pharmacology , Arthroplasty, Replacement, Hip , Calcineurin Inhibitors , Cell Line , Cell Nucleus/metabolism , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Gene Expression/drug effects , Gene Expression/immunology , Humans , Materials Testing , Osteocytes/cytology , Osteocytes/metabolism , Prosthesis Failure , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...