Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 10(3): 313-27, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23495149

ABSTRACT

The MeOH extract of moxa, the processed leaves of Artemisia princeps PAMP. (Asteraceae), exhibited potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and melanogenesis-inhibitory activity in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16 melanoma cells. Eight caffeoylquinic acids, 1 and 6-12, five flavonoids, 13-17, two benzoic acid derivatives, 18 and 19, three coumarin derivatives, 20-22, four steroids, 23-26, and six triterpenoids, 27-32, were isolated from the MeOH extract. Upon evaluation of compounds 1, 6-23, and four semisynthetic caffeoylquinic acid esters, 2-5, for their DPPH radical-scavenging activity, 15 compounds, 1-13, 17, and 19, showed potent activities (IC(50) 3.1-16.8 µM). The 15 compounds exhibited, moreover, potent inhibitory activities (51.1-92.5% inhibition) against peroxidation of linoleic acid emulsion at 10 µg/ml concentration. In addition, when 27 compounds, 1-8, 10, 12, 13, 15-18, 20-25, and 27-32, were evaluated for their inhibitory activity against melanogenesis in α-MSH-stimulated B16 melanoma cells, five caffeoylquinic acids, i.e., chlorogenic acid (1), ethyl chlorogenate (3), propyl chlorogenate (4), isopropyl chlorogenate (5), and butyl chlorogenate (6), along with homoorientin (17) and vanillic acid (18), exhibited inhibitory activities with 33-62% reduction of melanin content at 100 µM concentration with no or almost no toxicity to the cells (89-114% of cell viability at 100 µM). Western blot analysis showed that compound 6 reduced the protein levels of microphtalmia-associated transcription factor (MITF), tyrosinase, tyrosine-related protein 1 (TRP-1), and TRP-2 mostly in a concentration-dependent manner, suggesting that this compound inhibits melanogenesis on α-MSH-stimulated B16 melanoma cells by, at least in part, inhibiting the expression of MITF, followed by decreasing the expression of tyrosinase, TRP-1, and TRP-2. Furthermore, four compounds, 13, 15, 16, and 30, exhibited cytotoxicities against HL60 human leukemia cell line (IC(50) 7.0-11.1 µM), and nine compounds, 14-16, 23, 26-28, 31, and 32, showed inhibitory effects (IC(50) 272-382 mol ratio/32 pmol 12-O-tetradecanoylphohrbol-13-acetate (TPA)) against Epstein-Barr virus early antigen (EBV-EA) activation induced by TPA in Raji cells.


Subject(s)
Antioxidants/chemistry , Artemisia/chemistry , Quinic Acid/analogs & derivatives , Animals , Antioxidants/isolation & purification , Antioxidants/toxicity , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Survival/drug effects , HL-60 Cells , Humans , Melanins/antagonists & inhibitors , Melanins/metabolism , Melanocyte-Stimulating Hormones/antagonists & inhibitors , Melanocyte-Stimulating Hormones/metabolism , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Microphthalmia-Associated Transcription Factor/antagonists & inhibitors , Microphthalmia-Associated Transcription Factor/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/toxicity , Plant Leaves/chemistry , Quinic Acid/chemistry , Quinic Acid/isolation & purification , Quinic Acid/toxicity
2.
Chem Biodivers ; 10(2): 167-76, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23418164

ABSTRACT

A new benzyl glucoside, 3-O-demethylnikoenoside (1), along with eleven known compounds, including seven aromatic glycosides, 2-8, three lignans, 9-11, and one cyclitol, 12, were isolated from the BuOH-soluble fraction of a MeOH extract of Acer buergerianum stem bark. The structures of the new compound were elucidated on the basis of extensive spectroscopic analyses and comparison with literature. Upon evaluation of compounds 1-12 on melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), three compounds, i.e., hovetrichoside B (8), pinoresinol 4-O-ß-D-glucopyranoside (9), and pinoresinol 4-O-ß-D-apiofuranosyl-(1→2)-ß-D-glucopyranoside (10), have been found to exhibit inhibitory effects with 41-49% melanin content compared to the control at 100 µM and low cytotoxicity to the cells (81-92% cell viability at 100 µM). Western blot analysis showed that compound 8 reduced the protein levels of MITF (=microphtalmia-associated transcription factor) and tyrosinase, in a concentration-dependent manner, suggesting that 8 inhibits melanogenesis in α-MSH-stimulated B16 melanoma cells by, at least in part, inhibiting the expression of MITF, followed by decreasing the expression of tyrosinase. On the other hand, upon Western blotting, compound 9 was found to reduce the protein levels of tyrosinase and TRP-2, while it increased MITF and TRP-1 (=tyrosine-related protein 1), in a concentration-dependent manner, indicating that 9 inhibits melanogenesis in α-MSH-stimulated B16 melanoma cells by, at least in part, inhibiting the expression of tyrosinase and TRP-2.


Subject(s)
Acer/chemistry , Glycosides/chemistry , Glycosides/pharmacology , Melanins/antagonists & inhibitors , Melanoma, Experimental/metabolism , Plant Bark/chemistry , Animals , Cell Line, Tumor , Cell Survival/drug effects , Glycosides/isolation & purification , Melanins/metabolism , Melanoma, Experimental/drug therapy , Mice , Microphthalmia-Associated Transcription Factor/metabolism , Monophenol Monooxygenase/metabolism , alpha-MSH/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...