Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 106(2): 143-152, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32032513

ABSTRACT

Advances in genomics have transformed our ability to identify the genetic causes of rare diseases (RDs), yet we have a limited understanding of the mechanistic roles of most genes in health and disease. When a novel RD gene is first discovered, there is minimal insight into its biological function, the pathogenic mechanisms of disease-causing variants, and how therapy might be approached. To address this gap, the Canadian Rare Diseases Models and Mechanisms (RDMM) Network was established to connect clinicians discovering new disease genes with Canadian scientists able to study equivalent genes and pathways in model organisms (MOs). The Network is built around a registry of more than 500 Canadian MO scientists, representing expertise for over 7,500 human genes. RDMM uses a committee process to identify and evaluate clinician-MO scientist collaborations and approve 25,000 Canadian dollars in catalyst funding. To date, we have made 85 clinician-MO scientist connections and funded 105 projects. These collaborations help confirm variant pathogenicity and unravel the molecular mechanisms of RD, and also test novel therapies and lead to long-term collaborations. To expand the impact and reach of this model, we made the RDMM Registry open-source, portable, and customizable, and we freely share our committee structures and processes. We are currently working with emerging networks in Europe, Australia, and Japan to link international RDMM networks and registries and enable matches across borders. We will continue to create meaningful collaborations, generate knowledge, and advance RD research locally and globally for the benefit of patients and families living with RD.


Subject(s)
Disease Models, Animal , Genetic Markers , Rare Diseases/genetics , Rare Diseases/therapy , Registries/standards , Animals , Databases, Factual , Genomics , Humans , Rare Diseases/epidemiology
2.
Int J Mol Sci ; 19(7)2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30011838

ABSTRACT

Many insights into human disease have been built on experimental results in Drosophila, and research in fruit flies is often justified on the basis of its predictive value for questions related to human health. Additionally, there is now a growing recognition of the value of Drosophila for the study of rare human genetic diseases, either as a means of validating the causative nature of a candidate genetic variant found in patients, or as a means of obtaining functional information about a novel disease-linked gene when there is little known about it. For these reasons, funders in the US, Europe, and Canada have launched targeted programs to link human geneticists working on discovering new rare disease loci with researchers who work on the counterpart genes in Drosophila and other model organisms. Several of these initiatives are described here, as are a number of output publications that validate this new approach.


Subject(s)
Disease Models, Animal , Drosophila/genetics , Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease/genetics , Rare Diseases/genetics , Animals , Biomedical Research/methods , Biomedical Research/organization & administration , Biomedical Research/trends , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/therapy , Humans , International Cooperation , Rare Diseases/diagnosis , Rare Diseases/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...