Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(23): 16128-16147, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38815003

ABSTRACT

One of the primary methods for band gap tuning in metal halide perovskites has been halide (I/Br) mixing. Despite widespread usage of this type of chemical substitution in perovskite photovoltaics, there is still little understanding of the structural impacts of halide alloying, with the assumption being the formation of ideal solid solutions. The FASnI3-xBrx (x = 0-3) family of compounds provides the first example where the assumption breaks down, as the composition space is broken into two unique regimes (x = 0-2.9; x = 2.9-3) based on their average structure with the former having a 3D and the latter having an extended 3D (pseudo 0D) structure. Pair distribution function (PDF) analyses further suggest a dynamic 5s2 lone pair expression resulting in increasing levels of off-centering of the central Sn as the Br concentration is increased. These antiferroelectric distortions indicate that even the x = 0-2.9 phase space behaves as a nonideal solid-solution on a more local scale. Solid-state NMR confirms the difference in local structure yielding greater insight into the chemical nature and local distributions of the FA+ cation. In contrast to the FAPbI3-xBrx series, a drastic photoluminescence (PL) quenching is observed with x ≥ 1.9 compounds having no observable PL. Our detailed studies attribute this quenching to structural transitions induced by the distortions of the [SnBr6] octahedra in response to stereochemically expressed lone pairs of electrons. This is confirmed through density functional theory, having a direct impact on the electronic structure.

2.
J Phys Chem Lett ; 15(23): 6062-6068, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38820135

ABSTRACT

Semiconductor nanocrystals (NCs) with size-tuned energy gaps present unique and desirable properties for optoelectronic applications. Recent synthetic advancements offer routes to spheroidal CsPbBr3 perovskite NCs in the strong quantum confinement regime with narrow size dispersion. Using tunable femtosecond laser pulses, we examine intraband carrier relaxation using transient absorption spectroscopy and show that, across the transition from weak to strong confinement, hot carrier lifetime increases compared to larger bulk-like particles. However, further increases of confinement subsequently lead to a reduction of the hot carrier lifetime and increase of the non-radiative Auger recombination rate. Finally, we show that hot carrier lifetimes increase as a function of excess energy above the band gap less sensitively under high confinement in comparison to the bulk. Understanding such unique trends is important for maximizing hot carrier lifetimes for use in next-generation hot carrier devices as well as evaluating the transition from weak to strong confinement.

3.
Chem Sci ; 11(5): 1342-1346, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-34123257

ABSTRACT

Redox-active metal-organic frameworks (MOFs) are promising materials for a number of next-generation technologies, and recent work has shown that redox manipulation can dramatically enhance electrical conductivity in MOFs. However, ligand-based strategies for controlling conductivity remain under-developed, particularly those that make use of reversible redox processes. Here we report the first use of ligand n-doping to engender electrical conductivity in a porous 3D MOF, leading to tunable conductivity values that span over six orders of magnitude. Moreover, this work represents the first example of redox switching leading to reversible conductivity changes in a 3D MOF.

SELECTION OF CITATIONS
SEARCH DETAIL
...