Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Cell Infect Microbiol ; 14: 1366563, 2024.
Article in English | MEDLINE | ID: mdl-38716192

ABSTRACT

Background: Routine surveillance for antimalarial drug resistance is critical to sustaining the efficacy of artemisinin-based Combination Therapies (ACTs). Plasmodium falciparum kelch-13 (Pfkelch-13) and non-Pfkelch-13 artemisinin (ART) resistance-associated mutations are uncommon in Africa. We investigated polymorphisms in Plasmodium falciparum actin-binding protein (Pfcoronin) associated with in vivo reduced sensitivity to ART in Nigeria. Methods: Fifty-two P. falciparum malaria subjects who met the inclusion criteria were followed up in a 28-day therapeutic efficacy study of artemether-lumefantrine in Lagos, Nigeria. Parasite detection was done by microscopy and molecular diagnostic approaches involving PCR amplification of genes for Pf18S rRNA, varATS, telomere-associated repetitive elements-2 (TARE-2). Pfcoronin and Pfkelch-13 genes were sequenced bi-directionally while clonality of infections was determined using 12 neutral P. falciparum microsatellite loci and msp2 analyses. Antimalarial drugs (sulfadoxine-pyrimethamine, amodiaquine, chloroquine and some quinolones) resistance variants (DHFR_51, DHFR_59, DHFR_108, DHFR_164, MDR1_86, MDR1_184, DHPS_581 and DHPS_613) were genotyped by high-resolution melting (HRM) analysis. Results: A total of 7 (26.92%) cases were identified either as early treatment failure, late parasitological failure or late clinical failure. Of the four post-treatment infections identified as recrudescence by msp2 genotypes, only one was classified as recrudescence by multilocus microsatellites genotyping. Microsatellite analysis revealed no significant difference in the mean allelic diversity, He, (P = 0.19, Mann-Whitney test). Allele sizes and frequency per locus implicated one isolate. Genetic analysis of this isolate identified two new Pfcoronin SNVs (I68G and L173F) in addition to the P76S earlier reported. Linkage-Disequilibrium as a standardized association index, IAS, between multiple P. falciparum loci revealed significant LD (IAS = 0.2865, P=0.02, Monte-Carlo simulation) around the neutral microsatellite loci. The pfdhfr/pfdhps/pfmdr1 drug resistance-associated haplotypes combinations, (108T/N/51I/164L/59R/581G/86Y/184F), were observed in two samples. Conclusion: Pfcoronin mutations identified in this study, with potential to impact parasite clearance, may guide investigations on emerging ART tolerance in Nigeria, and West African endemic countries.


Subject(s)
Antimalarials , Artemisinins , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Antimalarials/pharmacology , Antimalarials/therapeutic use , Nigeria , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Drug Resistance/genetics , Artemisinins/pharmacology , Artemisinins/therapeutic use , Mutation , Protozoan Proteins/genetics , Artemether, Lumefantrine Drug Combination/therapeutic use , Male , Microfilament Proteins/genetics , Female , Drug Combinations , Microsatellite Repeats/genetics , Genotype , Sequence Analysis, DNA , Recurrence , Polymorphism, Genetic , Adult
2.
Sci Rep ; 12(1): 21881, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36536036

ABSTRACT

Plasmodium malariae, a neglected human malaria parasite, contributes up to 10% of malaria infections in sub-Saharan Africa (sSA). Though P. malariae infection is considered clinically benign, it presents mostly as coinfections with the dominant P. falciparum. Completion of its reference genome has paved the way to further understand its biology and interactions with the human host, including responses to antimalarial interventions. We characterized 75 P. malariae isolates from seven endemic countries in sSA using highly divergent microsatellites. The P. malariae infections were highly diverse and five subpopulations from three ancestries (independent of origin of isolates) were determined. Sequences of 11 orthologous antimalarial resistance genes, identified low frequency single nucleotide polymorphisms (SNPs), strong linkage disequilibrium between loci that may be due to antimalarial drug selection. At least three sub-populations were detectable from a subset of denoised SNP data from mostly the mitochondrial cytochrome b coding region. This evidence of diversity and selection calls for including P. malariae in malaria genomic surveillance towards improved tools and strategies for malaria elimination.


Subject(s)
Malaria , Plasmodium malariae , Humans , Africa South of the Sahara , Antimalarials/therapeutic use , Malaria/parasitology , Microsatellite Repeats , Plasmodium malariae/genetics , Polymorphism, Single Nucleotide , Drug Resistance/genetics
3.
J Public Health Afr ; 13(3): 1616, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36277952

ABSTRACT

Background: The outbreak of COVID-19 disease and rapid spread of the virus outside China led to its declaration as a Public Health Emergency of International Concern (PHEIC) in January 2020. Key elements of the early intervention strategy focused on laboratory diagnosis and screening at points of entry and imposition of restrictions in crossborder activities. Objective: We report the role the Medical Research Council Unit, The Gambia (MRCG) played in the early implementation of molecular testing for COVID-19 in The Gambia as part of the national outbreak response. Methods: Laboratory staff members, with experience in molecular biology assays, were identified and trained on COVID-19 testing at the Africa CDC training workshop in Dakar, Senegal. Thereafter risks assessments, drafting of standard operating procedures (SOPs) and inhouse training enabled commencement of testing using commercial RTPCR kits. Subsequently, testing was expanded to the National Public Health Laboratroy and also implemented across field sites for rapid response across the country. Results: Capacity for COVID-19 testing at MRCG was developed and can process aproximately 350 tests per day, which can be further scaled up as the demand for testing increases. Conclusion: The long presence of the Unit in The Gambia and strong collaborative relationship with the National Health Ministry, allowed for a synergistc approach in mounting an effective response that contributed in delaying the establishment of community transmission in the country.

4.
Crit Rev Microbiol ; 47(1): 44-56, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33507842

ABSTRACT

Plasmodium malariae is often reported as a benign malaria parasite. There are limited data on its biology and disease burden in sub-Saharan Africa (sSA) possibly due to the unavailability of specific and affordable tools for routine diagnosis and large epidemiology studies. In addition, P. malariae occurs at low parasite densities and in co-infections with other species, predominately P. falciparum. The paucity of data on P. malariae infections limits the capacity to accurately determine its contribution to malaria and the effect of control interventions against P. falciparum on its prevalence. Here, we summarise the current knowledge on P. malariae epidemiology in sSA - overall prevalence ranging from 0-32%, as detected by different diagnostic methods; seroprevalence ranging from 0-56% in three countries (Mozambique, Benin and Zimbabwe), and explore the future application of next-generation sequencing technologies as a tool for enriching P. malariae genomic epidemiology. This will provide insights into important adaptive mechanisms of this neglected non-falciparum species, including antimalarial drug resistance, local and regional parasite transmission patterns and genomic signatures of selection. Improved diagnosis and genomic surveillance of non-falciparum malaria parasites in Africa would be helpful in evaluating progress towards elimination of all human Plasmodium species.


Subject(s)
Malaria/parasitology , Neglected Diseases/parasitology , Plasmodium malariae/physiology , Africa/epidemiology , Animals , Antibodies, Protozoan/blood , Biomedical Research , Humans , Malaria/blood , Malaria/epidemiology , Neglected Diseases/blood , Neglected Diseases/epidemiology , Plasmodium malariae/genetics
5.
Am J Trop Med Hyg ; 103(6): 2208-2216, 2020 12.
Article in English | MEDLINE | ID: mdl-33124531

ABSTRACT

Although Plasmodium falciparum continues to be the main target for malaria elimination, other Plasmodium species persist in Africa. Their clinical diagnosis is uncommon, whereas rapid diagnostic tests (RDTs), the most widely used malaria diagnostic tools, are only able to distinguish between P. falciparum and non-falciparum species, the latter as "pan-species." Blood samples from health facilities were collected in southern Nigeria (Lagos and Calabar) in 2017 (October-December) and Calabar only in 2018 (October-November), and analyzed by several methods, namely, microscopy, quantitative real-time PCR (qPCR), and peptide serology targeting candidate antigens (Plasmodium malariae apical membrane antigen, P. malariae lactose dehydrogenase, and P. malariae circumsporozoite surface protein). Both microscopy and qPCR diagnostic approaches detected comparable proportions (∼80%) of all RDT-positive samples infected with the dominant P. falciparum malaria parasite. However, higher proportions of non-falciparum species were detected by qPCR than microscopy, 10% against 3% infections for P. malariae and 3% against 0% for Plasmodium ovale, respectively. No Plasmodium vivax infection was detected. Infection rates for P. malariae varied between age-groups, with the highest rates in individuals aged > 5 years. Plasmodium malariae-specific seroprevalence rates fluctuated in those aged < 10 years but generally reached the peak around 20 years of age for all peptides. The heterogeneity and rates of these non-falciparum species call for increased specific diagnosis and targeting by elimination strategies.


Subject(s)
Antigens, Protozoan/immunology , Malaria/epidemiology , Plasmodium malariae/immunology , Plasmodium/immunology , Adolescent , Child , Child, Preschool , Diagnostic Tests, Routine , Female , Humans , Infant , Malaria/parasitology , Malaria/transmission , Male , Microscopy , Nigeria/epidemiology , Plasmodium ovale/immunology , Plasmodium vivax/immunology , Protozoan Proteins/immunology , Real-Time Polymerase Chain Reaction , Seroepidemiologic Studies , Surveys and Questionnaires
7.
Malar J ; 14: 396, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26450599

ABSTRACT

BACKGROUND: New diagnostic tools to detect reliably and rapidly asymptomatic and low-density malaria infections are needed as their treatment could interrupt transmission. Isothermal amplification techniques are being explored for field diagnosis of malaria. In this study, a novel molecular tool (loop-mediated isothermal amplification-LAMP) targeting the apicoplast genome of Plasmodium falciparum was evaluated for the detection of asymptomatic malaria-infected individuals in a rural setting in The Gambia. METHODS: A blood was collected from 341 subjects (median age 9 years, range 1-68 years) screened for malaria. On site, a rapid diagnostic test (RDT, SD Bioline Malaria Antigen P.f) was performed, thick blood films (TBF) slides for microscopy were prepared and dry blood spots (DBS) were collected on Whatman(®) 903 Specimen collection paper. The TBF and DBS were transported to the field laboratory where microscopy and LAMP testing were performed. The latter was done on DNA extracted from the DBS using a crude (methanol/heating) extraction method. A laboratory-based PCR amplification was done on all the samples using DNA extracted with the Qiagen kit and its results were taken as reference for all the other tests. RESULTS: Plasmodium falciparum malaria prevalence was 37 % (127/341) as detected by LAMP, 30 % (104/341) by microscopy and 37 % (126/341) by RDT. Compared to the reference PCR method, sensitivity was 92 % for LAMP, 78 % for microscopy, and 76 % for RDT; specificity was 97 % for LAMP, 99 % for microscopy, and 88 % for RDT. Area under the receiver operating characteristic (ROC) curve in comparison with the reference standard was 0.94 for LAMP, 0.88 for microscopy and 0.81 for RDT. Turn-around time for the entire LAMP assay was approximately 3 h and 30 min for an average of 27 ± 9.5 samples collected per day, compared to a minimum of 10 samples an hour per operator by RDT and over 8 h by microscopy. CONCLUSION: The LAMP assay could produce reliable results the same day of the screening. It could detect a higher proportion of low density malaria infections than the other methods tested and may be used for large campaigns of systematic screening and treatment.


Subject(s)
Apicoplasts/genetics , Blood/parasitology , Malaria, Falciparum/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Plasmodium falciparum/isolation & purification , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Gambia , Humans , Infant , Male , Middle Aged , Plasmodium falciparum/genetics , Rural Population , Sensitivity and Specificity , Young Adult
8.
J Antimicrob Chemother ; 70(1): 2-13, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25223973

ABSTRACT

In countries where malaria transmission has decreased substantially, thanks to the scale-up of control interventions, malaria elimination may be feasible. Nevertheless, this goal requires new strategies such as the active detection and treatment of infected individuals. As the detection threshold for the currently used diagnostic methods is 100 parasites/µL, most low-density, asymptomatic infections able to maintain transmission cannot be detected. Identifying them by molecular methods such as PCR is a possible option but the field deployment of these tests is problematic. Isothermal amplification of nucleic acids (at a constant temperature) offers the opportunity of addressing some of the challenges related to the field deployment of molecular diagnostic methods. One of the novel isothermal amplification methods for which a substantial amount of work has been done is the loop-mediated isothermal amplification (LAMP) assay. The present review describes LAMP and several other isothermal nucleic acid amplification methods, such as thermophilic helicase-dependent amplification, strand displacement amplification, recombinase polymerase amplification and nucleic acid sequence-based amplification, and explores their potential use as high-throughput, field-based molecular tests for malaria diagnosis.


Subject(s)
Malaria/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Point-of-Care Systems , Biomedical Research/trends , Humans , Molecular Diagnostic Techniques/trends , Temperature
9.
J Infect Dis ; 209(7): 1126-35, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24265439

ABSTRACT

BACKGROUND: Analysis of genome-wide polymorphism in many organisms has potential to identify genes under recent selection. However, data on historical allele frequency changes are rarely available for direct confirmation. METHODS: We genotyped single nucleotide polymorphisms (SNPs) in 4 Plasmodium falciparum drug resistance genes in 668 archived parasite-positive blood samples of a Gambian population between 1984 and 2008. This covered a period before antimalarial resistance was detected locally, through subsequent failure of multiple drugs until introduction of artemisinin combination therapy. We separately performed genome-wide sequence analysis of 52 clinical isolates from 2008 to prospect for loci under recent directional selection. RESULTS: Resistance alleles increased from very low frequencies, peaking in 2000 for chloroquine resistance-associated crt and mdr1 genes and at the end of the survey period for dhfr and dhps genes respectively associated with pyrimethamine and sulfadoxine resistance. Temporal changes fit a model incorporating likely selection coefficients over the period. Three of the drug resistance loci were in the top 4 regions under strong selection implicated by the genome-wide analysis. CONCLUSIONS: Genome-wide polymorphism analysis of an endemic population sample robustly identifies loci with detailed documentation of recent selection, demonstrating power to prospectively detect emerging drug resistance genes.


Subject(s)
Drug Resistance , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Selection, Genetic , Alleles , Antimalarials/therapeutic use , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Gambia/epidemiology , Genome, Protozoan , Genotype , Humans , Malaria, Falciparum/drug therapy , Plasmodium falciparum/isolation & purification , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
10.
Acta Trop ; 121(3): 175-83, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22142790

ABSTRACT

With the paradigm shift from the reduction of morbidity and mortality to the interruption of transmission, the focus of malaria control broadens from symptomatic infections in children ≤5 years of age to include asymptomatic infections in older children and adults. In addition, as control efforts intensify and the number of interventions increases, there will be decreases in prevalence, incidence and transmission with additional decreases in morbidity and mortality. Expected secondary consequences of these changes include upward shifts in the peak ages for infection (parasitemia) and disease, increases in the ages for acquisition of antiparasite humoral and cellular immune responses and increases in false-negative blood smears and rapid diagnostic tests. Strategies to monitor these changes must include: (1) studies of the entire population (that are not restricted to children ≤5 or ≤10 years of age), (2) study sites in both cities and rural areas (because of increasing urbanization across sub-Saharan Africa) and (3) innovative strategies for surveillance as the prevalence of infection decreases and the frequency of false-negative smears and rapid diagnostic tests increases.


Subject(s)
Communicable Disease Control/methods , Disease Transmission, Infectious/prevention & control , Malaria, Falciparum/prevention & control , Plasmodium falciparum/pathogenicity , Africa, Western/epidemiology , Animals , Anopheles/parasitology , Antibodies, Protozoan/immunology , Antimalarials/pharmacology , Communicable Disease Control/legislation & jurisprudence , Communicable Disease Control/organization & administration , Drug Resistance, Microbial , Genotype , Humans , Immunity, Cellular , Incidence , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , National Health Programs/organization & administration , Parasitemia/epidemiology , Parasitemia/immunology , Parasitemia/parasitology , Parasitemia/prevention & control , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Prevalence , Seasons , Sensitivity and Specificity
11.
Malar J ; 8: 274, 2009 Dec 02.
Article in English | MEDLINE | ID: mdl-19954532

ABSTRACT

BACKGROUND: Health record-based observations from several parts of Africa indicate a major decline in malaria, but up-to-date information on parasite prevalence in West-Africa is sparse. This study aims to provide parasite prevalence data from three sites in the Gambia and Guinea Bissau, respectively, and compares the usefulness of PCR, rapid diagnostic tests (RDT), serology and slide-microscopy for surveillance. METHODS: Cross-sectional surveys in 12 villages at three rural sites were carried out in the Gambia and Guinea Bissau in January/February 2008, shortly following the annual transmission season. RESULTS: A surprisingly low microscopically detectable parasite prevalence was detected in the Gambia (Farafenni: 10.9%, CI95%: 8.7-13.1%; Basse: 9.0%, CI95%: 7.2-10.8%), and Guinea Bissau (Caio: 4%, CI95%: 2.6-5.4%), with low parasite densities (geometric mean: 104 parasites/microl, CI95%: 76-143/microl). In comparison, PCR detected a more than three times higher proportion of parasite carriers, indicating its usefulness to sensitively identify foci where malaria declines, whereas the RDT had very low sensitivity. Estimates of force of infection using age sero-conversion rates were equivalent to an EIR of approximately 1 infectious bite/person/year, significantly less than previous estimates. The sero-prevalence profiles suggest a gradual decline of malaria transmission, confirming their usefulness in providing information on longer term trends of transmission. A greater variability in parasite prevalence among villages within a site than between sites was observed with all methods. The fact that serology equally captured the inter-village variability, indicates that the observed heterogeneity represents a stable pattern. CONCLUSION: PCR and serology may be used as complementary tools to survey malaria in areas of declining malaria prevalence such as the Gambia and Guinea Bissau.


Subject(s)
Malaria, Falciparum/diagnosis , Parasitemia/diagnosis , Plasmodium falciparum/isolation & purification , Population Surveillance/methods , Adolescent , Adult , Age Distribution , Animals , Child , Child, Preschool , Cross-Sectional Studies , Female , Gambia/epidemiology , Guinea-Bissau/epidemiology , Humans , Infant , Infant, Newborn , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Microscopy/standards , Middle Aged , Parasitemia/epidemiology , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards , Prevalence , Rural Population , Seasons , Sensitivity and Specificity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...