Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 11(1): 5266, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664371

ABSTRACT

Among various cytokines, interleukin (IL)-12 family cytokines have very unique characteristics in that they are composed of two distinct subunits and these subunits are shared with each other. IL-23, one of the IL-12 family cytokines, consists of p19 and p40 subunits, is mainly produced by antigen-presenting cells, and plays a critical role in the expansion and maintenance of pathogenic helper CD4+ T (Th)17 cells. Since we initially found that p19 is secreted in the culture supernatant of activated CD4+ T cells, we have further investigated the role of p19. p19 was revealed to associate with CD5 antigen-like (CD5L), which is a repressor of Th17 pathogenicity and is highly expressed in non-pathogenic Th17 cells, to form a composite p19/CD5L. This p19/CD5L was shown to activate STAT5 and enhance the differentiation into granulocyte macrophage colony-stimulating factor (GM-CSF)-producing CD4+ T cells. Both CD4+ T cell-specific conditional p19-deficient mice and complete CD5L-deficient mice showed significantly alleviated experimental autoimmune encephalomyelitis (EAE) with reduced frequency of GM-CSF+CD4+ T cells. During the course of EAE, the serum level of p19/CD5L, but not CD5L, correlated highly with the clinical symptoms. Thus, the composite p19/CD5L is a possible novel heterodimeric cytokine that contributes to EAE development with GM-CSF up-regulation.


Subject(s)
Apoptosis Regulatory Proteins/genetics , CD5 Antigens/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Interleukin-23 Subunit p19/genetics , Receptors, Scavenger/genetics , Animals , Antigen-Presenting Cells/immunology , Apoptosis Regulatory Proteins/immunology , CD4-Positive T-Lymphocytes/immunology , CD5 Antigens/immunology , CD5 Antigens/ultrastructure , Dimerization , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Humans , Interleukin-23 Subunit p19/immunology , Interleukin-23 Subunit p19/ultrastructure , Mice , Receptors, Scavenger/immunology , Th1 Cells/immunology , Th17 Cells/immunology
3.
J Clin Invest ; 130(11): 6124-6140, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32809973

ABSTRACT

Epstein-Barr virus-induced gene 3 (EBI3) is a subunit common to IL-27, IL-35, and IL-39. Here, we explore an intracellular role of EBI3 that is independent of its function in cytokines. EBI3-deficient naive CD4+ T cells had reduced IFN-γ production and failed to induce T cell-dependent colitis in mice. Similarly reduced IFN-γ production was observed in vitro in EBI3-deficient CD4+ T cells differentiated under pathogenic Th17 polarizing conditions with IL-23. This is because the induction of expression of one of the IL-23 receptor (IL-23R) subunits, IL-23Rα, but not another IL-23R subunit, IL-12Rß1, was selectively decreased at the protein level, but not the mRNA level. EBI3 augmented IL-23Rα expression via binding to the chaperone molecule calnexin and to IL-23Rα in a peptide-dependent manner, but not a glycan-dependent manner. Indeed, EBI3 failed to augment IL-23Rα expression in the absence of endogenous calnexin. Moreover, EBI3 poorly augmented the expression of G149R, an IL-23Rα variant that protects against the development of human colitis, because binding of EBI3 to the variant was reduced. Taken together with the result that EBI3 expression is inducible in T cells, the present results suggest that EBI3 plays a critical role in augmenting IL-23Rα protein expression via calnexin under inflammatory conditions.


Subject(s)
Calnexin/immunology , Gene Expression Regulation/immunology , Minor Histocompatibility Antigens/immunology , Receptors, Cytokine/immunology , Receptors, Interleukin/immunology , T-Lymphocytes/immunology , Amino Acid Substitution , Animals , Calnexin/genetics , Mice , Mice, Knockout , Minor Histocompatibility Antigens/genetics , Mutation, Missense , Receptors, Cytokine/genetics , Receptors, Interleukin/genetics
4.
Oncoimmunology ; 7(5): e1421892, 2018.
Article in English | MEDLINE | ID: mdl-29721372

ABSTRACT

Interleukin (IL)-27 is a multifunctional cytokine that belongs to the IL-6/IL-12 family and has potent antitumor activity through various mechanisms. Our novel findings indicate that IL-27 directly acts on hematopoietic stem cells and promotes their expansion and differentiation into myeloid progenitors to control infection and to eradicate tumors.

5.
Cell Mol Life Sci ; 75(8): 1363-1376, 2018 04.
Article in English | MEDLINE | ID: mdl-29218601

ABSTRACT

Hematopoiesis is hierarchically orchestrated by a very small population of hematopoietic stem cells (HSCs) that reside in the bone-marrow niche and are tightly regulated to maintain homeostatic blood production. HSCs are predominantly quiescent, but they enter the cell cycle in response to inflammatory signals evoked by severe systemic infection or injury. Thus, hematopoietic stem and progenitor cells (HSPCs) can be activated by pathogen recognition receptors and proinflammatory cytokines to induce emergency myelopoiesis during infection. This emergency myelopoiesis counterbalances the loss of cells and generates lineage-restricted hematopoietic progenitors, eventually replenishing mature myeloid cells to control the infection. Controlled generation of such signals effectively augments host defense, but dysregulated stimulation by these signals is harmful to HSPCs. Such hematopoietic failure often results in blood disorders including chronic inflammatory diseases and hematological malignancies. Recently, we found that interleukin (IL)-27, one of the IL-6/IL-12 family cytokines, has a unique ability to directly act on HSCs and promote their expansion and differentiation into myeloid progenitors. This process resulted in enhanced production of neutrophils by emergency myelopoiesis during the blood-stage mouse malaria infection. In this review, we summarize recent advances in the regulation of myelopoiesis by proinflammatory cytokines including type I and II interferons, IL-6, IL-27, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, and IL-1 in infectious diseases.


Subject(s)
Gene Expression Regulation/immunology , Hematologic Neoplasms/immunology , Malaria/immunology , Myelopoiesis/immunology , Neutrophils/immunology , Animals , Cell Cycle/genetics , Cell Cycle/immunology , Cell Differentiation , Cell Proliferation , Granulocyte Colony-Stimulating Factor/genetics , Granulocyte Colony-Stimulating Factor/immunology , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Humans , Interferons/genetics , Interferons/immunology , Interleukin-1/genetics , Interleukin-1/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Interleukins/genetics , Interleukins/immunology , Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/immunology , Malaria/genetics , Malaria/parasitology , Malaria/pathology , Mice , Myeloid Progenitor Cells/immunology , Myeloid Progenitor Cells/parasitology , Myeloid Progenitor Cells/pathology , Myelopoiesis/genetics , Neutrophils/parasitology , Neutrophils/pathology , Plasmodium berghei/growth & development , Plasmodium berghei/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...