Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(7): 3438-3448, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36722923

ABSTRACT

Recently, progress in electrochromic (EC) devices has been made in optimizing electrode and device configurations and performance. However, the ion insertion/de-insertion induced charge transfer (CT) nanomechanical effect has remained unexplored, i.e., repetitive electrode size changes at the nanoscale and stress/strain generated during electrochemical cycling, which is the focus of this work due to its intimate correlation with the elastic and plastic deformation at the interface. Considering the intervalence electrons, excellent electrochemical kinetics, and dramatic color changes, tungsten oxide (WO3) and nickel oxide (NiO) films are configured as the EC cathode and anode materials, respectively, within a full device. Upon extended cycles (>10 000), the void generation and delamination that occurred at the interface account for performance decay. Encouraged by the findings, nanoindentation mechanical tests and electrical kelvin probe force microscopy were employed to investigate the CT induced effects at the interface. There is a dramatic increase of up to 45% in the elastic Young's modulus in colored/charged WO3 at ∼40 mC cm-2. The correlation between CT and synergistic mechanical effect is interpreted by the Lippman equation. Interestingly, despite the charged state (colored; lithiated) with a relatively flat morphology bringing an ∼3.4 times higher electrostatic surface potential, the electrical work function unexpectedly decreases, arising from the dominant effect of the dipole layer potential over the chemical potential. The interatomic cohesive energy and equilibrium distance increase bury the seeds for mechanical deformation in the long run. This work provides fundamental insights into electro-chemo mechanics and interdisciplinary concerted interfacial effects at the nano/atomic level. The dependence of surface potential, stress, work function, and cohesive energy on electrochemical kinetics has been interpreted.

SELECTION OF CITATIONS
SEARCH DETAIL
...