Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Pept Sci ; 17(5): 335-41, 2011 May.
Article in English | MEDLINE | ID: mdl-21294230

ABSTRACT

Cell-penetrating peptides (CPPs) are cationic oligopeptides able to translocate across biological membranes without perturbing them, while antimicrobial peptides (AMPs) kill bacteria mainly by disrupting their membranes. The two peptide classes share several characteristics (charge, amphipathicity, helicity, and length), and therefore the molecular properties discriminating between the two different bioactivities are not clear. Pep-1-K (KKTWWKTWWTKWSQPKKKRKV) is a new AMP derived from the widely studied CPP Pep-1 (KETWWETWWTEWSQPKKKRKV), or 'Chariot', known for its ability to carry large cargoes across biological membranes. Pep-1-K was obtained from Pep-1 by substituting the three Glu residues with Lys, to increase its cationic character. Previous studies showed that these modifications endow Pep-1-K with a potent antimicrobial activity, with MICs in the low micromolar range. Here, we characterized the interaction of Pep-1 and Pep-1-K with model membranes to understand the reason for the antimicrobial activity of Pep-1-K. The data show that this peptide causes vesicle aggregation, perturbs membrane order, and induces the leakage of ions, but not of larger solutes, while these effects were not observed for Pep-1. These differences are likely due, at least in part, to the higher affinity of Pep-1-K toward anionic bilayers, which mimick the composition of bacterial membranes.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Cell Membrane/chemistry , Cell-Penetrating Peptides/chemistry , Lipid Bilayers/chemistry , Liposomes/chemistry , Microscopy, Confocal , Spectrometry, Fluorescence
2.
Biochemistry ; 48(43): 10473-82, 2009 Nov 03.
Article in English | MEDLINE | ID: mdl-19795889

ABSTRACT

Glutathione transferases (GSTs) are dimeric enzymes involved in cell detoxification versus many endogenous toxic compounds and xenobiotics. In addition, single monomers of GSTs appear to be involved in particular protein-protein interactions as in the case of the pi class GST that regulates the apoptotic process by means of a GST-c-Jun N-terminal kinase complex. Thus, the dimer-monomer transition of GSTs may have important physiological relevance, but many studies reached contrasting conclusions both about the modality and extension of this event and about the catalytic competence of a single subunit. This paper re-examines the monomer-dimer question in light of novel experiments and old observations. Recent papers claimed the existence of a predominant monomeric and active species among pi, alpha, and mu class GSTs at 20-40 nM dilution levels, reporting dissociation constants (K(d)) for dimeric GST of 5.1, 0.34, and 0.16 microM, respectively. However, we demonstrate here that only traces of monomers could be found at these concentrations since all these enzymes display K(d) values of <<1 nM, values thousands of times lower than those reported previously. Time-resolved and steady-state fluorescence anisotropy experiments, two-photon fluorescence correlation spectroscopy, kinetic studies, and docking simulations have been used to reach such conclusions. Our results also indicate that there is no clear evidence of the existence of a fully active monomer. Conversely, many data strongly support the idea that the monomeric form is scarcely active or fully inactive.


Subject(s)
Glutathione Transferase/chemistry , Glutathione Transferase/metabolism , Fluorescence Polarization , Glutathione S-Transferase pi/chemistry , Glutathione S-Transferase pi/genetics , Glutathione S-Transferase pi/metabolism , Glutathione Transferase/genetics , Humans , Kinetics , Models, Molecular , Protein Conformation , Protein Multimerization , Spectrometry, Fluorescence
3.
J Pept Sci ; 15(9): 607-14, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19507197

ABSTRACT

Mastitis, or inflammation of the mammary gland, is the most common and expensive illness of dairy cows throughout the world. Although stress and physical injuries may give rise to inflammation of the udders, infections by bacteria or other microorganisms remain the major cause, and infusion of antibiotics is the main treatment approach. However, the increased emergence of multidrug-resistant pathogens and the production of milk contaminated with antibiotics has become a serious threat in the livestock. Hence, there is an urgent need for the discovery of new therapeutic agents with a new mode of action. Gene-encoded AMPs, which represent the first line of defence in all living organisms, are considered as promising candidates for the development of new anti-infective agents. This paper reports on the antibacterial activities in vitro and in an animal model, of the frog skin AMP esculentin 1-21 [Esc(1-21)], along with a plausible mode of action. Our data revealed that this peptide (i) is highly potent against the most common mastitis-causing microbes (e.g. Streptococcus agalactiae); and (ii) is active in vivo, causing a visible regression of the clinical stage of mastitis in dairy cows, after 1 week of peptide treatment. Biophysical characterisation revealed that the peptide adopts an alpha-helical structure in microbial mimicking membranes and is able to permeate the membrane of S. agalactiae in a dose-dependent manner. Overall, these data suggest Esc(1-21) as an attractive AMP for the future design of new antibiotics to cure mastitis in cattle.


Subject(s)
Amphibian Proteins/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Mastitis, Bovine/microbiology , Amphibian Proteins/chemistry , Animals , Antimicrobial Cationic Peptides/chemical synthesis , Anura , Cattle , Cell Line , Cell Membrane/drug effects , Cell Survival/drug effects , Circular Dichroism , Female , Hemolysis/drug effects , Humans
4.
J Pept Sci ; 15(9): 550-8, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19455510

ABSTRACT

Most antimicrobial peptides exert their activity by interacting with bacterial membranes, thus perturbing their permeability. They are investigated as a possible solution to the insurgence of bacteria resistant to the presently available antibiotic drugs. However, several different models have been proposed for their mechanism of membrane perturbation, and the molecular details of this process are still debated. Here, we compare fluorescence spectroscopy experiments and molecular dynamics (MD) simulations regarding the association with lipid bilayers and lipid perturbation for two different amphiphilic helical antimicrobial peptides, PMAP-23 and trichogin GA IV. PMAP-23, a cationic peptide member of the cathelicidin family, is considered to induce membrane permeability according to the Shai-Matsuzaki-Huang "carpet" model, while trichogin GA IV is a neutral peptide, member of the peptaibol family. Although several lines of evidence suggest a "barrel-stave" mechanism of pore formation for the latter peptide, its length is only half the normal thickness of a lipid bilayer. Both fluorescence spectroscopy experiments and MD simulations indicated that PMAP-23 associates with membranes close to their surface and parallel to it, and in this arrangement it causes a severe perturbation to the bilayer, both regarding its surface tension and lipid order. By contrast, trichogin GA IV can undergo a transition from a surface-bound state to a transmembrane orientation. In the first arrangement, it does not cause any strong membrane perturbation, while in the second orientation it might be able to span the bilayer from one side to the other, despite its relatively short length, by causing a significant thinning of the membrane.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Computer Simulation , Spectrometry, Fluorescence/methods , Lipid Bilayers/chemistry , Lipopeptides/chemistry , Models, Theoretical
5.
Biochim Biophys Acta ; 1788(7): 1523-33, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19397893

ABSTRACT

Several bioactive peptides exert their biological function by interacting with cellular membranes. Structural data on their location inside lipid bilayers are thus essential for a detailed understanding of their mechanism of action. We propose here a combined approach in which fluorescence spectroscopy and molecular dynamics (MD) simulations were applied to investigate the mechanism of membrane perturbation by the antimicrobial peptide PMAP-23. Fluorescence spectra, depth-dependent quenching experiments, and peptide-translocation assays were employed to determine the location of the peptide inside the membrane. MD simulations were performed starting from a random mixture of water, lipids and peptide, and following the spontaneous self-assembly of the bilayer. Both experimental and theoretical data indicated a peptide location just below the polar headgroups of the membrane, with an orientation essentially parallel to the bilayer plane. These findings, together with experimental results on peptide-induced leakage from large and giant vesicles, lipid flip-flop and peptide exchange between vesicles, support a mechanism of action consistent with the "carpet" model. Furthermore, the atomic detail provided by the simulations suggested the occurrence of an additional, more specific and novel mechanism of bilayer destabilization by PMAP-23, involving the unusual insertion of charged side chains into the hydrophobic core of the membrane.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Lipid Bilayers/metabolism , Antimicrobial Cationic Peptides/chemistry , Fluorescence , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Protein Transport , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism
6.
J Phys Chem B ; 110(24): 12129-40, 2006 Jun 22.
Article in English | MEDLINE | ID: mdl-16800527

ABSTRACT

Mixtures containing water, bovine serum albumin (BSA), and sodium taurodeoxycholate (NaTDC), a component of the bile in mammals, have been investigated in a wide range of composition and pH. Depending on the concentration of both solutes and the pH, solutions, precipitates, and gels are formed. Under spontaneous pH conditions, the transport properties in dilute solutions indicate the occurrence of significant interactions between BSA and the surfactant. Conversely, acidic media favor the formation of nonsoluble protein-surfactant complexes, with subsequent precipitation. The nucleation kinetics of the protein-surfactant complexes in solid form and the related precipitation processes can be slow or fast, depending on the overall solute content and the mole ratio. At high concentrations, a gel, extending on both sides of the charge neutralization line, and two-phase regions are observed. Gels shrink in open air and swell in the presence of excess water. Depending on concentration and temperature, the gels transform from an essentially liquidlike behavior to that peculiar to true gels (when G' > or = G''). The thermal gelation threshold, the temperature above which G' > or = G'', depends on BSA and NaTDC content and is concomitant to moderate heat effects, inferred by differential scanning calorimetry (DSC). The above data also indicate that the protein thermal denaturation in the gel is shifted to higher temperatures compared to water. Such a stabilizing effect is presumably related to the occurrence of both electrostatic and hydrophobic interactions with NaTDC. Water self-diffusion in the gels is slightly slower than that in the bulk and poorly sensitive to composition: it is about 65% the value of neat H2O in a wide concentration range, irrespective of the BSA, or NaTDC, concentration. A peculiar behavior is also observed in 23Na longitudinal and transverse relaxation rates. The T1 and T2 values, measured at 105.75 MHz on BSA-NaTDC gels, indicate that the motions determining the NMR relaxation of the sodium ions in the hydration layer of the protein-surfactant aggregates are not slow, having frequencies comparable with the Larmor one. The above properties, especially the rheological and the spectroscopic ones, are important for understanding the behavior of gels based on protein-surfactant mixtures.


Subject(s)
Proteins/chemistry , Serum Albumin, Bovine/chemistry , Surface-Active Agents/chemistry , Taurodeoxycholic Acid/chemistry , Calorimetry, Differential Scanning , Microscopy, Electron, Scanning , Nuclear Magnetic Resonance, Biomolecular , Potentiometry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...