Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 108(52): 20881-90, 2011 Dec 27.
Article in English | MEDLINE | ID: mdl-22065782

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating and universally fatal neurodegenerative disease. Mutations in two related RNA-binding proteins, TDP-43 and FUS, that harbor prion-like domains, cause some forms of ALS. There are at least 213 human proteins harboring RNA recognition motifs, including FUS and TDP-43, raising the possibility that additional RNA-binding proteins might contribute to ALS pathogenesis. We performed a systematic survey of these proteins to find additional candidates similar to TDP-43 and FUS, followed by bioinformatics to predict prion-like domains in a subset of them. We sequenced one of these genes, TAF15, in patients with ALS and identified missense variants, which were absent in a large number of healthy controls. These disease-associated variants of TAF15 caused formation of cytoplasmic foci when expressed in primary cultures of spinal cord neurons. Very similar to TDP-43 and FUS, TAF15 aggregated in vitro and conferred neurodegeneration in Drosophila, with the ALS-linked variants having a more severe effect than wild type. Immunohistochemistry of postmortem spinal cord tissue revealed mislocalization of TAF15 in motor neurons of patients with ALS. We propose that aggregation-prone RNA-binding proteins might contribute very broadly to ALS pathogenesis and the genes identified in our yeast functional screen, coupled with prion-like domain prediction analysis, now provide a powerful resource to facilitate ALS disease gene discovery.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Motor Neurons/metabolism , Protein Structure, Tertiary , RNA-Binding Proteins/genetics , Spinal Cord/cytology , TATA-Binding Protein Associated Factors/genetics , Animals , Cells, Cultured , Computational Biology , Drosophila melanogaster/genetics , Genetic Association Studies/methods , Humans , Immunohistochemistry , Mutation, Missense/genetics , Saccharomyces cerevisiae/genetics , TATA-Binding Protein Associated Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...