Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 521(7552): 366-70, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25799994

ABSTRACT

Adult stem cells occur in niches that balance self-renewal with lineage selection and progression during tissue homeostasis. Following injury, culture or transplantation, stem cells outside their niche often display fate flexibility. Here we show that super-enhancers underlie the identity, lineage commitment and plasticity of adult stem cells in vivo. Using hair follicle as a model, we map the global chromatin domains of hair follicle stem cells and their committed progenitors in their native microenvironments. We show that super-enhancers and their dense clusters ('epicentres') of transcription factor binding sites undergo remodelling upon lineage progression. New fate is acquired by decommissioning old and establishing new super-enhancers and/or epicentres, an auto-regulatory process that abates one master regulator subset while enhancing another. We further show that when outside their niche, either in vitro or in wound-repair, hair follicle stem cells dynamically remodel super-enhancers in response to changes in their microenvironment. Intriguingly, some key super-enhancers shift epicentres, enabling their genes to remain active and maintain a transitional state in an ever-changing transcriptional landscape. Finally, we identify SOX9 as a crucial chromatin rheostat of hair follicle stem cell super-enhancers, and provide functional evidence that super-enhancers are dynamic, dense transcription-factor-binding platforms which are acutely sensitive to pioneer master regulators whose levels define not only spatial and temporal features of lineage-status but also stemness, plasticity in transitional states and differentiation.


Subject(s)
Adaptation, Physiological , Adult Stem Cells/cytology , Cell Differentiation/genetics , Cell Lineage/genetics , Enhancer Elements, Genetic/genetics , Hair Follicle/cytology , SOX9 Transcription Factor/metabolism , Adult Stem Cells/metabolism , Animals , Base Sequence , Chromatin/genetics , Chromatin/metabolism , Female , Mice , Organ Specificity , Stem Cell Niche , Time Factors
2.
Cell ; 144(3): 341-52, 2011 Feb 04.
Article in English | MEDLINE | ID: mdl-21295697

ABSTRACT

Homeostasis and wound healing rely on stem cells (SCs) whose activity and directed migration are often governed by Wnt signaling. In dissecting how this pathway integrates with the necessary downstream cytoskeletal dynamics, we discovered that GSK3ß, a kinase inhibited by Wnt signaling, directly phosphorylates ACF7, a > 500 kDa microtubule-actin crosslinking protein abundant in hair follicle stem cells (HF-SCs). We map ACF7's GSK3ß sites to the microtubule-binding domain and show that phosphorylation uncouples ACF7 from microtubules. Phosphorylation-refractile ACF7 rescues overall microtubule architecture, but phosphorylation-constitutive mutants do not. Neither mutant rescues polarized movement, revealing that phospho-regulation must be dynamic. This circuitry is physiologically relevant and depends upon polarized GSK3ß inhibition at the migrating front of SCs/progeny streaming from HFs during wound repair. Moreover, only ACF7 and not GSKß-refractile-ACF7 restore polarized microtubule-growth and SC-migration to ACF7 null skin. Our findings provide insights into how this conserved spectraplakin integrates signaling, cytoskeletal dynamics, and polarized locomotion of somatic SCs.


Subject(s)
Glycogen Synthase Kinase 3/metabolism , Microfilament Proteins/metabolism , Microtubules/metabolism , Skin/metabolism , Stem Cells/metabolism , Wound Healing , Animals , Cell Movement , Cells, Cultured , Glycogen Synthase Kinase 3 beta , Mice , Mice, Transgenic , Phosphorylation , Protein Structure, Tertiary , Skin/cytology , Stem Cells/cytology
3.
J Orthop Res ; 27(1): 28-35, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18661500

ABSTRACT

Mice lacking HIP/RPL29, a ribosomal modulator of protein synthesis rate, display a short stature phenotype. To understand the contribution of HIP/RPL29 to bone formation and adult whole bone mechanical properties, we examined both developing and adult bone in our knockout mice. Results indicated that bone shortening in HIP/RPL29-null mice is due to delayed entry of chondro-osteoprogenitors into the cell cycle. Structural properties of adult null bones were analyzed by micro-computed tomography. Interestingly, partial preservation of cortical thickness was observed in null males indicating a gender-specific effect of the genotype on cortical bone parameters. Null males, and to a lower extent null females, displayed increased bone material toughness to counteract decreased bone size. This elevation in a bone material property was associated with increased bone mineral density only in null males. Neither male nor female null animals could withstand the same maximum load as gender-matched controls in three-point bending tests, and smaller post-yield displacements (and thus increased bone brittleness) were found for null animals. These results suggest that HIP/RPL29-deficient mice exhibit increased bone fragility due to altered matrix protein synthesis rates as a consequence of ribosomal insufficiency. Thus, sub-efficient protein translation increased fracture risk in HIP/RPL29-null animals. Taken together, these studies provide strong genetic evidence that the ability to regulate and amplify protein synthesis rates, including those proteins that regulate the cell cycle entry during skeletal development, are important determinants for establishment of normal bone mass and quality.


Subject(s)
Bone and Bones/pathology , Osteogenesis , Ribosomal Proteins/genetics , Animals , Biomechanical Phenomena , Bone and Bones/metabolism , Cell Proliferation , Female , Fracture Healing , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Genetic , RNA-Binding Proteins , Ribosomal Proteins/physiology , Ribosomes/metabolism , Tomography, X-Ray Computed
4.
Dev Dyn ; 236(2): 447-60, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17195189

ABSTRACT

Because of their deleterious effects on developing organisms, ribosomal protein (RP) mutations have been poorly described in mammals, and only a few heterozygous mutations have been shown to be viable. This observation is believed to be due to the fact that each RP is an essential component in the assembly of a functional stable ribosome. Here, we created gene targeted mutant mice lacking HIP/RPL29, an RP associated with translationally active ribosomes in eukaryotes. In contrast to other RP mutants, HIP/RPL29 null mice are viable but are up to 50% smaller than their control littermates at weaning age. In null embryos, delayed global growth is first observed around mid-gestation, and postnatal lethality due to low birth weight results in distortion of the Mendelian ratio. Prenatal growth defects are not fully compensated for during adulthood, and null animals display proportionately smaller organs and stature, and reach sexual maturity considerably later when compared with their control siblings. Additionally, HIP/RPL29 null embryonic fibroblasts have decreased rates of proliferation and protein synthesis and exhibit reduced steady state levels of core RPs. Altogether, our findings provide conclusive genetic evidence that HIP/RPL29 functions as an important regulator of global growth by modulating the rate of protein synthesis.


Subject(s)
Embryonic Development/genetics , Growth/genetics , Protein Biosynthesis/genetics , Ribosomal Proteins/genetics , Animals , Blotting, Western , Cell Proliferation , DNA Primers , Electrophoresis, Polyacrylamide Gel , Fibroblasts/cytology , Fibroblasts/metabolism , Mice , Mice, Knockout , Microscopy, Fluorescence , Mutation/genetics , Polyribosomes/chemistry , RNA-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...