Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 11(6): 2631-2641, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37324897

ABSTRACT

There has been increasing search for the ameliorative properties of seed oils against toxicants. bisphenol A acts as an estrogenic endocrine-disrupting chemical capable of causing male infertility. This study aimed to explore Cucumeropsis mannii seed oil effects against mitochondrial damage in rats using bisphenol A. Forty-eight rats were randomly assigned to six groups (n = 6) of eight rats each and fed the same food and water for 6 weeks. The group A rats were given 1 mL olive oil, while the ones in group B were given bisphenol A at 100 mL/kg body weight via oral route. Group C received C. mannii seed oil 7.5 mL/kg body weight C. mannii seed oil, while group D, group E, and group F were pre-administered bisphenol A at 100 mL/kg body weight, followed by treatment with C. mannii seed oil at 7.5, 5, and 2.5 mL/kg body weight, respectively. Antioxidant enzymes, glutathione, reactive oxygen species, testicular volume, malondialdehyde, body weight, and testicular studies were done using standard methods. The results of the bisphenol A-administered group showed a significant decrease in the antioxidant enzymes, glutathione, body weight, and testicular volume with elevation in the levels of reactive oxygen species, malondialdehyde, and testicular indices. BPA + CMSO-treated group showed a significant increase in GPx activity compared with BPA-exposed rats. CMSO treatment significantly increased catalase activity in comparison with that of rats exposed to BPA. Remarkably, C. mannii seed oil and bisphenol A co-administration significantly reversed the abnormalities observed in the dysregulated biochemical biomarkers. Our findings suggest that C. mannii seed oil has considerable antioxidant potential which can be explored in therapeutic development against systemic toxicity induced by exposure to bisphenol A. Cucumeropsis mannii seed oil protects against bisphenol A-induced testicular mitochondria damages.

2.
PLoS One ; 18(5): e0284210, 2023.
Article in English | MEDLINE | ID: mdl-37200359

ABSTRACT

Oral antidiabetic agents including the peroxisome proliferator-activated receptor gamma (PPARγ) agonists are available for the clinical management of diabetes mellitus (DM) but most are characterized by many adverse effects. In this study, we explore the antidiabetic properties of phytoconstituents from Trigonellafeonumgraecum (Fabaceae) as potential agonist of PPARγ; using in silico molecular docking, molecular mechanics generalized surface area (MM/GBSA)free binding energy prediction, Pharmacophore modeling experiment, and Pharmacokinetic/ toxicity analysis. One hundred and forty (140) compounds derived from Trigonellafeonumgraecum were screened by molecular docking against protein target PDB 3VI8. Results obtained from binding affinity (BA) and that of binding free energy (BFE) revealed five 5 compounds; arachidonic acid (CID_10467, BA -10.029, BFE -58.9), isoquercetin (CID_5280804, BA -9.507kcal/mol, BFE -56.33), rutin (CID_5280805, BA -9.463kcal/mol, BFE -56.33), quercetin (CID_10121947, BA -11.945kcal/mol, BFE -45.89) and (2S)-2-[[4-methoxy-3-[(pyrene-1-carbonylamino)methyl]phenyl]methyl]butanoic acid (CID_25112371, BA -10.679kcal/mol, BFE -45.73); and were superior to the standard; Rosiglitazone with a docking score of -7.672. Hydrogen bonding was notable in the protein-ligand complex interaction, with hydrophobic bond, polar bond and pipi stacking also observed. Their Pharmacokinetic/ toxicity profile showed varying druggable characteristics, but; arachidonic acid had the most favorable characteristics. These compounds are potential agonists of PPARγ and are considered as antidiabetic agents after successful experimental validation.


Subject(s)
Diabetes Mellitus , Trigonella , Arachidonic Acid , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/chemistry , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Pharmacophore , PPAR gamma/metabolism , Trigonella/metabolism , Humans
3.
Viruses ; 15(1)2023 01 03.
Article in English | MEDLINE | ID: mdl-36680186

ABSTRACT

Lassa fever (LF) is a rodent-borne disease that threatens human health in the sub-region of West Africa where the zoonotic host of Lassa virus (LASV) is predominant. Currently, treatment options for LF are limited and since no preventive vaccine is approved for its infectivity, there is a high mortality rate in endemic areas. This narrative review explores the transmission, pathogenicity of LASV, advances, and challenges of different treatment options. Our findings indicate that genetic diversity among the different strains of LASV and their ability to circumvent the immune system poses a critical challenge to the development of LASV vaccines/therapeutics. Thus, understanding the biochemistry, physiology and genetic polymorphism of LASV, mechanism of evading host immunity are essential for development of effective LASV vaccines/therapeutics to combat this lethal viral disease. The LASV nucleoprotein (NP) is a novel target for therapeutics as it functions significantly in several aspects of the viral life cycle. Consequently, LASV NP inhibitors could be employed as effective therapeutics as they will potentially inhibit LASV replication. Effective preventive control measures, vaccine development, target validation, and repurposing of existing drugs, such as ribavirin, using activity or in silico-based and computational bioinformatics, would aid in the development of novel drugs for LF management.


Subject(s)
Lassa Fever , Viral Vaccines , Humans , Lassa virus , Africa, Western/epidemiology , Virus Replication
4.
Pak J Biol Sci ; 24(6): 724-732, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34486349

ABSTRACT

<b>Background and Objective:</b> Liver disease orchestrated by noxious chemicals are serious health problems the world over. Traditionally, there are claims that ethanol extracts of leaves and stem barks of <i>Olax subscorpioidea</i> are used in the treatment of hepatic disorders. Thus, it investigated the impacts of ethanol extract of leaves and stem bark of <i>Olax subscorpioidea</i> against carbon tetrachloride (CCl<sub>4</sub>)-induced liver damage in rats. <b>Materials and Methods:</b> Liver toxicity was induced by intraperitoneal injection of 2.5 mg kg<sup>1</sup> b.wt., of CCl<sub>4</sub> in experimental rats. Rats were treated with 200, 400 and 800 mg kg<sup>1</sup> dose ethanol leaves and stem bark of <i>Olax subscorpioidea</i>, respectively after induction of liver damage. <b>Results:</b> Obtained results showed a significant rise in the serum levels of Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT), Alkaline Phosphatase (ALP), Malondialdehyde (MDA) and bilirubin as well as decreased Albumin (ALB), Superoxide Dismutase (SOD), Catalase (CAT), reduced Glutathione (GSH) in CCl<sub>4</sub>-challenged rats. Treatment with the extracts attenuated serum levels of AST, ALT, ALP, MDA and bilirubin in addition to increased activities of SOD, CAT and the levels of ALB and GSH when compared to the CCl<sub>4</sub> group. Histopathological studies demonstrated that the extracts ameliorated liver necrosis and inflammation due to CCl<sub>4</sub> insult. <b>Conclusion:</b> These results concluded that ethanol extract of leaves and stem bark of <i>Olax subscorpioidea </i>may reduce hepatic oxidative injury caused by CCl<sub>4</sub> by its antioxidant potentials.


Subject(s)
Antioxidants/pharmacology , Chemical and Drug Induced Liver Injury/prevention & control , Liver/drug effects , Olacaceae , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Animals , Antioxidants/isolation & purification , Biomarkers/metabolism , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Disease Models, Animal , Ethanol/chemistry , Liver/metabolism , Liver/pathology , Male , Olacaceae/chemistry , Plant Bark , Plant Extracts/isolation & purification , Plant Leaves , Rats, Wistar , Solvents/chemistry
5.
J Food Biochem ; 43(7): e12912, 2019 07.
Article in English | MEDLINE | ID: mdl-31353723

ABSTRACT

The antirheumatoid arthritis potential of ethanol and aqueous extracts of seed pod of Copaifera salikounda (SPCS) was evaluated using the chicken collagen/complete Freund's adjuvant-induced arthritic rats model. Adjuvat-induced rats were treated with varied doses of the extracts (400, 600, and 800 mg/kg body weight) and with reference drug, indomethacin for 21 days. Antiarthritic evaluation was done through measurement of body weight, paw size, inflammatory makers, hematological parameters, cytokines, antioxidant enzymes, reduced glutathione, lipid peroxidation as well as histopathological examinations. Treatment with the ethanol and aqueous extracts of SPCS markedly inhibited the paw size and caused weight gain. The extracts considerably modulated the hematological as well as the antioxidant parameters. Likewise, the extract restored the altered lipid peroxidation, pro-inflammatory mediators, and inflammatory factors which further accentuate the implication in adjuvant-induced arthritis. Thus, the ethanol and aqueous extracts of SPCS showed a significant antiarthritic activity that was statistically analogous to that of indomethacin. Practical applications Copaifera salikounda (Heckel) has been used in treatment of different ailments including rheumatoid arthritis in folklore medicine. This is the first reported proof of the antiarthritic potential of the seed pod. Oxidative stress has been implicated in rheumatoid arthritis. Ethanol extract of SPCS has been shown to be predominantly rich in phenols, terpenoids, alkaloids, and flavonoids which are natural antioxidant. The present study has demonstrated that ethanol and aqueous extracts of SPCS can exert antioxidative and antiinflammatory effects, thus strengthening its antiarthritic potentials.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Arthritis, Experimental/drug therapy , Fabaceae/chemistry , Plant Extracts/pharmacology , Alkaloids/analysis , Alkaloids/pharmacology , Animals , Anti-Inflammatory Agents/analysis , Antioxidants/analysis , Arthritis, Experimental/chemically induced , Arthritis, Experimental/pathology , Cytokines/metabolism , Female , Flavonoids/analysis , Flavonoids/pharmacology , Freund's Adjuvant/adverse effects , Fruit/chemistry , Indomethacin/pharmacology , Lipid Peroxidation/drug effects , Male , Oxidative Stress/drug effects , Phenols/analysis , Phenols/pharmacology , Plant Extracts/chemistry , Rats , Rats, Wistar , Terpenes/analysis , Terpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...