Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Oral Investig ; 22(2): 733-744, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28667399

ABSTRACT

OBJECTIVES: The morphology and chemical composition of enamel submitted to different sterilization methods was studied. METHODS: X-ray photoelectron spectroscopy (XPS), field emission gun scanning electron microscopy (FEG-SEM), and energy-dispersive X-ray spectroscopy (EDS) were performed to evaluate 50 bovine enamel specimens sterilized using four methods: microwaving (MI), gamma irradiation (GI), ethylene oxide (EO), and steam autoclave (SA). Non-sterilized specimens were used as control. RESULTS: XPS indicated that the concentration of P (phosphorus), CO3 (carbonate), and CO3/P was not changed in all groups. GI produced no significant change on elemental composition. SA produced the major decrease in calcium (Ca), Ca/P ratio, and increase in N (nitrogen). MI was found to decrease Ca, Ca/P ratio and O (oxygen), and increase in C (carbon) and N. EO produced decrease in Ca and O with increased C concentration. FEG-SEM revealed surface and in-depth morphological changes on SA specimens. Minor surface alterations were observed for EO and for MI groups, and no alteration was observed on GI group. EDS indicated no difference on elemental composition of enamel bulk among groups. CONCLUSIONS: SA produced mineral loss and morphological alterations on surface and in depth. MI and EO sterilization caused mineral loss showing only slight alteration on enamel surface. GI sterilization preserves the morphological characteristics of enamel. The sterilization methods could be classified from lower to high damage as GI < MI < EO < SA. CLINICAL RELEVANCE: This is a comprehensive comparative study where different methods for enamel sterilization were investigated in terms of chemical changes. The results presented here may help researchers to choose the most appropriate method for their research setting and purpose.


Subject(s)
Dental Enamel/chemistry , Sterilization/methods , Animals , Cattle , In Vitro Techniques , Materials Testing , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Spectrometry, X-Ray Emission , Surface Properties
2.
Ultrason Sonochem ; 38: 256-270, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28633825

ABSTRACT

Copper tungstate (CuWO4) crystals were synthesized by the sonochemistry (SC) method, and then, heat treated in a conventional furnace at different temperatures for 1h. The structural evolution, growth mechanism and photoluminescence (PL) properties of these crystals were thoroughly investigated. X-ray diffraction patterns, micro-Raman spectra and Fourier transformed infrared spectra indicated that crystals heat treated and 100°C and 200°C have water molecules in their lattice (copper tungstate dihydrate (CuWO4·2H2O) with monoclinic structure), when the crystals are calcinated at 300°C have the presence of two phase (CuWO4·2H2O and CuWO4), while the others heat treated at 400°C and 500°C have a single CuWO4 triclinic structure. Field emission scanning electron microscopy revealed a change in the morphological features of these crystals with the increase of the heat treatment temperature. Transmission electron microscopy (TEM), high resolution-TEM images and selected area electron diffraction were employed to examine the shape, size and structure of these crystals. Ultraviolet-Visible spectra evidenced a decrease of band gap values with the increase of the temperature, which were correlated with the reduction of intermediary energy levels within the band gap. The intense photoluminescence (PL) emission was detected for the sample heat treat at 300°C for 1h, which have a mixture of CuWO4·2H2O and CuWO4 phases. Therefore, there is a synergic effect between the intermediary energy levels arising from these two phases during the electronic transitions responsible for PL emissions.

3.
Phys Chem Chem Phys ; 17(28): 18761-7, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26119265

ABSTRACT

X-ray absorption near edge structure (XANES) and electrical measurements were used to elucidate the local structure and electronic changes of copper(II) oxide (CuO) nanostructures under working conditions. For this purpose, a sample holder layout was developed enabling the simultaneous analysis of the spectroscopic and electrical properties of the sensor material under identical operating conditions. The influence of different carrier gases (e.g., air and N2) on the CuO nanostructures behavior under reducing conditions (H2 gas) was studied to analyze how a particular gas atmosphere can modify the oxidation state of the sensor material in real time.

4.
J Nanosci Nanotechnol ; 14(9): 6662-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25924314

ABSTRACT

This paper reports both the controlled synthesis of Sn3O4 nanobelts by carbothermal reduction method and the gas sensor properties of these nanostructures. The synthesized material was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and gas sensor measurements. The results showed that the Sn3O4 nanobelts grow in a layered way and the careful control of experimental parameters is fundamental for stabilization of the correct phase. From the gas sensor measurements using oxygen as analyte gas, it was observed that the Sn3O4 nanobelts exhibit n-type behavior and both the sensitivity and the response time are dependent on the oxygen concentration. A model based on molecules adsorption was proposed to illustrate the mechanism of gas detection of these nanostructures. In summary, these results indicate that Sn3O4 nanobelts synthesized by carbothermal reduction method are promising to be applied as gas sensors.


Subject(s)
Nanostructures/chemistry , Nanotechnology/methods , Tin Compounds/chemistry , Carbon/chemistry , Oxygen/analysis
5.
Sci Rep ; 3: 1676, 2013.
Article in English | MEDLINE | ID: mdl-23591807

ABSTRACT

In this letter, we report, for the first time, the real-time in situ nucleation and growth of Ag filaments on α-Ag2WO4 crystals driven by an accelerated electron beam from an electronic microscope under high vacuum. We employed several techniques to characterise the material in depth. By using these techniques combined with first-principles modelling based on density functional theory, a mechanism for the Ag filament formation followed by a subsequent growth process from the nano- to micro-scale was proposed. In general, we have shown that an accelerated electron beam from an electronic microscope under high vacuum enables in situ visualisation of Ag filaments with subnanometer resolution and offers great potential for addressing many fundamental issues in materials science, chemistry, physics and other fields of science.


Subject(s)
Crystallization/methods , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Oxides/chemistry , Silver/chemistry , Tungsten/chemistry , Electrons , Nanoparticles/radiation effects , Oxides/radiation effects , Particle Size , Silver/radiation effects , Treatment Outcome , Tungsten/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...