Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Epigenetics ; 14(1): 189, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36578055

ABSTRACT

BACKGROUND: High dietary glycaemic index (GI) and load (GL) have been associated with increased risk of various cardiometabolic conditions. Among the molecular potential mechanisms underlying this relationship, DNA methylation has been studied, but a direct link between high GI and/or GL of diet and global DNA methylation levels has not been proved yet. We analyzed the associations between GI and GL and global DNA methylation patterns within an Italian population. RESULTS: Genomic DNA methylation (5mC) and hydroxymethylation (5hmC) levels were measured in 1080 buffy coat samples from participants of the Moli-sani study (mean(SD) = 54.9(11.5) years; 52% women) via ELISA. A 188-item Food Frequency Questionnaire was used to assess food intake and dietary GI and GL for each participant were calculated. Multiple linear regressions were used to investigate the associations between dietary GI and GL and global 5mC and 5hmC levels, as well as the proportion of effect explained by metabolic and inflammatory markers. We found negative associations of GI with both 5mC (ß (SE) = - 0.073 (0.027), p = 0.007) and 5hmC (- 0.084 (0.030), p = 0.006), and of GL with 5mC (- 0.14 (0.060), p = 0.014). Circulating biomarkers did not explain the above-mentioned associations. Gender interaction analyses revealed a significant association of the gender-x-GL interaction with 5mC levels, with men showing an inverse association three times as negative as in women (interaction ß (SE) = - 0.16 (0.06), p = 0.005). CONCLUSIONS: Our findings suggest that global DNA methylation and hydroxymethylation patterns represent a biomarker of carbohydrate intake. Based on the differential association of GL with 5mC between men and women, further gender-based separate approaches are warranted.


Subject(s)
DNA Methylation , Glycemic Index , Male , Humans , Female , Diet/adverse effects , Linear Models
2.
Front Psychiatry ; 13: 959171, 2022.
Article in English | MEDLINE | ID: mdl-36311535

ABSTRACT

Background: Major depressive disorder is a mental illness associated with chronic conditions like cardiovascular disease (CVD). Circulating inflammation has been proposed as a potential mechanism underlying this link, although the role of specific biomarkers, gender, and symptom domains is not well elucidated. Methods: We performed multivariable Cox regressions of first hospitalization/all-cause mortality and CVD, ischemic heart (IHD), and cerebrovascular disease (CeVD) causes vs. depression severity in an Italian population cohort (N = 13,191; age ≥ 35 years; 49.3% men; 4,856 hospitalizations and 471 deaths, median follow-up 7.28 and 8.24 years, respectively). In models adjusted for age, sex, and socioeconomic status, we estimated the proportion of association explained by C-reactive protein (CRP), platelet count, granulocyte-to-lymphocyte ratio (GLR), and white blood cell count (WBC). Gender-by-depression interaction and gender-stratified analyses were performed. Associations of polychoric factors tagging somatic and cognitive symptoms with incident clinical risks were also tested, as well as the proportion explained by a composite index of circulating inflammation (INFLA score). Results: Significant proportions of the influence of depression on clinical risks were explained by CRP (4.8% on IHD hospitalizations), GLR (11% on all-cause mortality), and WBC (24% on IHD/CeVD hospitalizations). Gender-by-depression interaction was significantly associated only with all-cause mortality (p = 0.03), with moderate depression showing a + 60% increased risk in women, but not in men. Stable associations of somatic, but not of cognitive, symptoms with increased hospitalization risk were observed (+ 16% for all causes, + 14% for CVD causes), with INFLA score explaining small but significant proportions of these associations (2.5% for all causes, 8.6% for IHD causes). Conclusions: These findings highlight the importance of cellular components of inflammation, gender, and somatic depressive symptoms in the link between depression and clinical (especially CVD) risks, pointing to the existence of additional pathways through which depression may play a detrimental effect on the cardiovascular system.

3.
Article in English | MEDLINE | ID: mdl-35681950

ABSTRACT

The use of secondary hospital-based clinical data and electronical health records (EHR) represent a cost-efficient alternative to investigate chronic conditions. We present the Clinical Network Big Data and Personalised Health project, which collects EHRs for patients accessing hospitals in Central-Southern Italy, through an integrated digital platform to create a digital hub for the collection, management and analysis of personal, clinical and environmental information for patients, associated with a biobank to perform multi-omic analyses. A total of 12,864 participants (61.7% women, mean age 52.6 ± 17.6 years) signed a written informed consent to allow access to their EHRs. The majority of hospital access was in obstetrics and gynaecology (36.3%), while the main reason for hospitalization was represented by diseases of the circulatory system (21.2%). Participants had a secondary education (63.5%), were mostly retired (25.45%), reported low levels of physical activity (59.6%), had low adherence to the Mediterranean diet and were smokers (30.2%). A large percentage (35.8%) were overweight and the prevalence of hypertension, diabetes and hyperlipidemia was 36.4%, 11.1% and 19.6%, respectively. Blood samples were retrieved for 8686 patients (67.5%). This project is aimed at creating a digital hub for the collection, management and analysis of personal, clinical, diagnostic and environmental information for patients, and is associated with a biobank to perform multi-omic analyses.


Subject(s)
Big Data , Medical Records Systems, Computerized , Adult , Aged , Chronic Disease , Female , Hospitals , Humans , Informed Consent , Male , Middle Aged
4.
Eur J Nutr ; 61(3): 1231-1243, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34741648

ABSTRACT

PURPOSE: Nutrition is an important, modifiable, environmental factor affecting human health by modulating epigenetic processes, including DNA methylation (5mC). Numerous studies investigated the association of nutrition with global and gene-specific DNA methylation and evidences on animal models highlighted a role in DNA hydroxymethylation (5hmC) regulation. However, a more comprehensive analysis of different layers of nutrition in association with global levels of 5mC and 5hmC is lacking. We investigated the association between global levels of 5mC and 5hmC and human nutrition, through the stratification and analysis of dietary patterns into different nutritional layers: adherence to Mediterranean diet (MD), main food groups, macronutrients and micronutrients intake. METHODS: ELISA technique was used to measure global 5mC and 5hmC levels in 1080 subjects from the Moli-sani cohort. Food intake during the 12 months before enrolment was assessed using the semi-quantitative EPIC food frequency questionnaire. Complementary approaches involving both classical statistics and supervised machine learning analyses were used to investigate the associations between global 5mC and 5hmC levels and adherence to Mediterranean diet, main food groups, macronutrients and micronutrients intake. RESULTS: We found that global DNA methylation, but not hydroxymethylation, was associated with daily intake of zinc and vitamin B3. Random Forests algorithms predicting 5mC and 5hmC through intakes of food groups, macronutrients and micronutrients revealed a significant contribution of zinc, while vitamin B3 was reported among the most influential features. CONCLUSION: We found that nutrition may affect global DNA methylation, suggesting a contribution of micronutrients previously implicated as cofactors in methylation pathways.


Subject(s)
5-Methylcytosine , DNA Methylation , 5-Methylcytosine/metabolism , Animals , Epigenesis, Genetic , Humans , Nutritional Status
5.
Cells ; 10(10)2021 10 13.
Article in English | MEDLINE | ID: mdl-34685717

ABSTRACT

Defined as an index of platelet size heterogeneity, the platelet distribution width (PDW) is still a poorly characterized marker of platelet function in (sub)clinical disease. We presently validated PDW as a marker of P-selectin dependent platelet activation in the Moli-family cohort. Platelet-bound P-selectin and platelet/leukocyte mixed aggregates were measured by flow cytometry in freshly collected venous blood, both before and after in vitro platelet activation, and coagulation time was assessed in unstimulated and LPS- or TNFα-stimulated whole blood. Closure Times (CT) were measured in a Platelet Function Analyzer (PFA)-100. Multivariable linear mixed effect regression models (with age, sex and platelet count as fixed and family structure as random effect) revealed PDW to be negatively associated with platelet P-selectin, platelet/leukocyte aggregates and von Willebrand factor (VWF), and positively with PFA-100 CT, and LPS- and TNF-α-stimulated coagulation times. With the exception of VWF, all relationships were sex-independent. In contrast, no association was found between mean platelet volume (MPV) and these variables. PDW seems a simple, useful marker of ex vivo and in vitro P-selectin dependent platelet activation. Investigations of larger cohorts will define the usefulness of PDW as a risk predictor of thrombo-inflammatory conditions where activated platelets play a contributing role.


Subject(s)
Blood Platelets/metabolism , P-Selectin/metabolism , Adult , Blood Coagulation , Cohort Studies , Family , Female , Humans , Inflammation/pathology , Leukocytes/metabolism , Male , Platelet Activation , Sex Characteristics , von Willebrand Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...