Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Immunohorizons ; 6(7): 559-568, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35882422

ABSTRACT

Apoptotic cell clearance by professional and nonprofessional phagocytes in the process of efferocytosis is critical to preserve tissue homeostasis. Uptake of apoptotic cells by dendritic cells generates regulatory T cells and induces immunologic tolerance against self-antigens. In contrast, ingestion of infected apoptotic cells promotes activation of TLR4/MyD88-dependent bone marrow-derived dendritic cells (BMDCs) and triggers Th17 cell differentiation. In this study, we evaluated the impact of Streptococcus pneumoniae-infected apoptotic cell efferocytosis by BMDCs derived from C57BL/6 mice on differentiation and expansion of CD4+ T cell subsets, as well as the role of TLR2/4 and receptor-interacting protein 2 (RIP2) receptors in recognizing intracellular pathogens during efferocytosis. We demonstrated that BMDC-mediated efferocytosis of S. pneumoniae-infected apoptotic cells induced Th1 cell differentiation and expansion. Although TLR2/4 and RIP2 deficiency in BMDCs did not affect Th1 cell differentiation during efferocytosis, the absence of RIP2 decreased IFN-γ production by CD4 T cells during the expansion phase. These findings suggest that RIP2-mediated IL-1ß production during efferocytosis of S. pneumoniae-infected apoptotic cells partially supports a Th1-mediated IFN-γ production microenvironment.


Subject(s)
CD4-Positive T-Lymphocytes , Interferon-gamma/biosynthesis , Streptococcus pneumoniae , Toll-Like Receptor 2 , Ubiquitin-Protein Ligases/metabolism , Animals , Apoptosis , Interferon-gamma/metabolism , Mice , Mice, Inbred C57BL , Signal Transduction , Th1 Cells , Toll-Like Receptor 2/metabolism
2.
Fitoterapia ; 137: 104197, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31175947

ABSTRACT

Clerodane diterpenes from Casearia sylvestris are antiulcerogenic and anti-inflammatory. The finding that they may undergo acid degradation or hepatic metabolization led to an investigation of their degradation products. Purified clerodane diterpenes (casearins J and O) were subjected to in vitro assays to simulate their oral administration. Resulting derivatives were identified using chromatographic and spectrometric techniques. Nitric oxide synthesis by LPS-stimulated macrophages was assayed to verify whether structural modifications alter the anti-inflammatory activity of diterpenes. Nine compounds (1-9) were identified after acid degradation remaining 5.05% of casearin J. Besides the remaining casearin O (13.1%), eight compounds (10-17) were identified. The dialdehydes from each casearin were the major constituents. S9 rat liver treatment of casearins J and O generated two compounds identical to some of those produced by acid degradation, which remained 36.8% and 36.5% intact, respectively. Both casearins and its derivatives were not cytotoxicity at concentrations lower than 0.312 µg/mL (0.555 µM for casearin J and 0.516 µM for casearin O) and did not inhibit the nitric oxide production in this concentration. Thus, the structural modifications conducted did not alter the activity of casearins and the anti-inflammatory pathway of diterpenes probably is not involved on nitric oxide modulation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Casearia/chemistry , Diterpenes, Clerodane/pharmacology , Macrophages/drug effects , Animals , Anti-Inflammatory Agents/chemistry , Brazil , Diterpenes, Clerodane/chemistry , Mice , Molecular Structure , Nitric Oxide/metabolism , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Leaves/chemistry , RAW 264.7 Cells , Rats
3.
Proc Natl Acad Sci U S A ; 115(36): E8469-E8478, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30127026

ABSTRACT

Inflammatory responses are terminated by the clearance of dead cells, a process termed efferocytosis. A consequence of efferocytosis is the synthesis of the antiinflammatory mediators TGF-ß, PGE2, and IL-10; however, the efferocytosis of infected cells favors Th17 responses by eliciting the synthesis of TGF-ß, IL-6, and IL-23. Recently, we showed that the efferocytosis of apoptotic Escherichia coli-infected macrophages by dendritic cells triggers PGE2 production in addition to pro-Th17 cytokine expression. We therefore examined the role of PGE2 during Th17 differentiation and intestinal pathology. The efferocytosis of apoptotic E. coli-infected cells by dendritic cells promoted high levels of PGE2, which impaired IL-1R expression via the EP4-PKA pathway in T cells and consequently inhibited Th17 differentiation. The outcome of murine intestinal Citrobacter rodentium infection was dependent on the EP4 receptor. Infected mice treated with EP4 antagonist showed enhanced intestinal defense against C. rodentium compared with infected mice treated with vehicle control. Those results suggest that EP4 signaling during infectious colitis could be targeted as a way to enhance Th17 immunity and host defense.


Subject(s)
Citrobacter rodentium/immunology , Colitis/immunology , Dendritic Cells/immunology , Dinoprostone/immunology , Enterobacteriaceae Infections/immunology , Intestines/immunology , Macrophages/immunology , Animals , Colitis/microbiology , Colitis/pathology , Dendritic Cells/microbiology , Dendritic Cells/pathology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/pathology , Female , Intestines/microbiology , Macrophages/microbiology , Macrophages/pathology , Mice , Receptors, Prostaglandin E, EP4 Subtype/immunology
4.
Immunology ; 151(3): 304-313, 2017 07.
Article in English | MEDLINE | ID: mdl-28267881

ABSTRACT

Efferocytosis, or clearance of apoptotic cells (ACs), by dendritic cells (DCs) leads to immune response suppression and tolerance to self-antigens. However, efferocytosis of infected apoptotic cells (IACs) leads to the production of a mixed pro- and anti-inflammatory cytokine milieu. We examined the DC phenotype and ability to migrate after phagocytosis of ACs or IACs and observed higher levels of CD86 and CCR7 expression in DCs, as well as enhanced migration capacity following efferocytosis of IACs. Interestingly, higher levels of interleukin-1ß, interleukin-10 and prostaglandin E2 (PGE2 ) were also produced in this context. Blockage of IAC recognition led to an impaired maturation profile and PGE2 production, which may have contributed to reduced CD86 and CCR7 expression and migration capacity. These data contribute to the understanding of how efferocytosis of sterile or infected cells may regulate the adaptive immune response, although the precise role of PGE2 in this process requires further investigation.


Subject(s)
Apoptosis , Chemotaxis , Dendritic Cells/pathology , Escherichia coli Infections/pathology , Lymph Nodes/pathology , Macrophages/pathology , Phagocytosis , Animals , B7-2 Antigen/metabolism , Chemokine CCL19/metabolism , Chemokine CCL21/metabolism , Coculture Techniques , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Dinoprostone/metabolism , Escherichia coli Infections/immunology , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Female , Inflammation Mediators/metabolism , Lymph Nodes/immunology , Lymph Nodes/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Phenotype , RAW 264.7 Cells , Receptors, CCR7/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...