Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Ecol Evol ; 8(4): 645-650, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307993

ABSTRACT

Mammalian herbivores browse palatable plants of ecological and economical value. Undesirable neighbours can reduce browsing to these plants by providing 'associational refuge', but they can also compete for resources. Here we recreated the informative odour emitted by undesirable plants. We then tested whether this odour could act as virtual neighbours, providing browsing refuge to palatable eucalyptus tree seedlings. We found that protection using this method was equivalent to protection provided by real plants. Palatable seedlings were 17-20 times more likely to be eaten by herbivores without virtual, or real, neighbours. Because many herbivores use plant odour to forage, virtual neighbours could provide a useful practical management approach to help protect valued plants.


Subject(s)
Herbivory , Odorants , Plants , Animals , Seedlings , Trees , Mammals
2.
Behav Ecol ; 34(5): 759-768, 2023.
Article in English | MEDLINE | ID: mdl-37744169

ABSTRACT

When foraging, making appropriate food choices is crucial to an animal's fitness. Classic foraging ecology theories assume animals choose food of greatest benefit based on their absolute value across multiple dimensions. Consequently, poorer options are considered irrelevant alternatives that should not influence decision-making among better options. But heuristic studies demonstrate that irrelevant alternatives (termed decoys) can influence the decisions of some animals, indicating they use a relative rather than absolute evaluation system. Our aim was to test whether a decoy influenced the decision-making process-that is, information-gathering and food choice-of a free-ranging mammalian herbivore. We tested swamp wallabies, Wallabia bicolor, comparing their behavior toward, and choice of, two available food options over time in the absence or presence of the decoy. We used a phantom decoy-unavailable option-and ran two trials in different locations and seasons. Binary preferences (decoy absent) for the two available food options differed between trials. Irrespective of this difference, across both trials the presence of the decoy resulted in animals more likely to overtly investigate available food options. But, the decoy only shifted food choice, weakly, in one trial. Our results indicate that the decoy influenced the information-gathering behavior during decision-making, providing the first evidence that decoys can affect decision-making process of free-ranging mammalian herbivores in an ecologically realistic context. It is premature to say these findings confirm the use of relative evaluation systems. Whether the foraging outcome is more strongly affected by other decoys, food dimensions, or ecological contexts, is yet to be determined.

3.
New Phytol ; 236(4): 1605-1619, 2022 11.
Article in English | MEDLINE | ID: mdl-35975694

ABSTRACT

All organisms emit odour, providing 'open-access' olfactory information for any receiver with the right sensory apparatus. Characterizing open-access information emitted by groups of organisms, such as plant species, provides the means to answer significant questions about ecological interactions and their evolution. We present a new conceptual framework defining information reliability and a practical method to characterize and recover information from amongst olfactory noise. We quantified odour emissions from two tree species, one focal group and one outgroup, to demonstrate our approach using two new R statistical functions. We explore the consequences of relaxing or tightening criteria defining information and, from thousands of odour combinations, we identify and quantify those few likely to be informative. Our method uses core general principles characterizing information while incorporating knowledge of how receivers detect and discriminate odours. We can now map information in consistency-precision reliability space, explore the concept of information, and test information-noise boundaries, and between cues and signals.


Subject(s)
Odorants , Plants , Plants/chemistry , Reproducibility of Results , Trees/chemistry
4.
Biol Lett ; 16(7): 20200329, 2020 07.
Article in English | MEDLINE | ID: mdl-32673541

ABSTRACT

Foraging by mammalian herbivores has profound impacts on natural and modified landscapes, yet we know little about how they find food, limiting our ability to predict and manage their influence. Mathematical models show that foragers exploiting odour cues outperform a random walk strategy. However, discovering how free-ranging foragers exploit odours in real, complex landscapes has proven elusive because of technological constraints. We took a novel approach, using a sophisticated purpose-built thermal camera system to record fine-scale foraging by a generalist mammalian herbivore, the swamp wallaby (Wallabia bicolor). We tested the hypothesis that odour cues shape forager movement and behaviour in vegetation patches. To do this, we compared wallaby foraging in two odour landscapes: Control (natural vegetation with food and non-food plants interspersed) and +Apple (the same natural vegetation plus a single, highly palatable food source with novel odour (apple)). The +Apple treatment led to strongly directed foraging by wallabies: earlier visits to vegetation patches, straighter movement paths, more hopping and fewer stops than in the Control treatment. Our results provide clear empirical evidence that odour cues are harnessed for efficient, directed search even at this fine scale. We conclude that random walk models miss a key feature shaping foraging within patches.


Subject(s)
Herbivory , Odorants , Animals , Cues , Feeding Behavior , Food , Macropodidae
SELECTION OF CITATIONS
SEARCH DETAIL
...