Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 37(5): 636-46, 1994 Mar 04.
Article in English | MEDLINE | ID: mdl-8126704

ABSTRACT

Adenosine analogues modified at the 5'-position as uronamides and/or as N6-benzyl derivatives were synthesized. These derivatives were examined for affinity in radioligand binding assays at the newly discovered rat brain A3 adenosine receptor and at rat brain A1 and A2a receptors. 5'-Uronamide substituents favored A3 selectivity in the order N-methyl > N-ethyl approximately unsubstituted carboxamide > N-cyclopropyl. 5'-(N-Methylcarboxamido)-N6-benzyladenosine was 37-56-fold more selective for A3 receptors. Potency at A3 receptors was enhanced upon substitution of the benzyl substituent with nitro and other groups. 5'-N-Methyluronamides and N6-(3-substituted-benzyl)adenosines are optimal for potency and selectivity at A3 receptors. A series of 3-(halobenzyl)-5'-N-ethyluronamide derivatives showed the order of potency at A1 and A2a receptors of I approximately Br > Cl > F. At A3 receptors the 3-F derivative was weaker than the other halo derivatives. 5'-N-Methyl-N6-(3-iodobenzyl)adenosine displayed a Ki value of 1.1 nM at A3 receptors and selectivity versus A1 and A2a receptors of 50-fold. A series of methoxybenzyl derivatives showed that a 4-methoxy group best favored A3 selectivity. A 4-sulfobenzyl derivative was a specific ligand at A3 receptors of moderate potency. An aryl amino derivative was prepared as a probe for radioiodination and receptor cross-linking.


Subject(s)
Adenosine/analogs & derivatives , Receptors, Purinergic P1/metabolism , Adenosine/chemical synthesis , Adenosine/chemistry , Adenosine/metabolism , Adenosine-5'-(N-ethylcarboxamide) , Animals , Brain/metabolism , CHO Cells , Cell Membrane/metabolism , Cerebral Cortex/metabolism , Cricetinae , Molecular Structure , Rats , Structure-Activity Relationship
2.
J Med Chem ; 35(22): 4098-104, 1992 Oct 30.
Article in English | MEDLINE | ID: mdl-1304169

ABSTRACT

Synthesis of optically pure (-)- and (+)-adenallene 2 and 3 is described. Racemic adenallene (1a) was subjected to deamination with adenosine deaminase monitored by HPLC using a Chiralcel CA-1 column to give (-)-adenallene (2) and (+)-hypoxallene (4). The latter compound was converted to acetate 5. The reaction of 5 with trifluoromethanesulfonic anhydride and pyridine followed by ammonolysis furnished acetate 6 or (+)-adenallene (3) depending on the solvent used in the last step. Acetate 5 was smoothly transformed to the 6-chloro derivative 7, but an attempted ammonolysis led only to racemization and decomposition. Single crystal X-ray diffraction established the R-configuration of (-)-enantiomer 2. The latter forms a pseudosymmetric dimer in the lattice with the adenine moiety in an anti-like conformation. The torsional angles of the allenic bonds show departures from 90 degrees (91 and 97 degrees, respectively) and rotameric preference of the hydroxymethyl groups is different in both molecules of the dimer. The R-enantiomer 2 inhibited the replication and cytopathic effect of human immunodeficiency virus (HIV-1) in ATH8 cell culture with an IC50 of 5.8 microM, whereas the S-enantiomer 3 was less active (IC50 > 200 microM). The enantioselectivity of the anti-HIV effect is significantly lower than that of 2',3'-dideoxyadenosine. Kinetics of deamination of R- and S-enantiomers 2 and 3 catalyzed by adenosine deaminase gave the following parameters: Km values of S-form 3 and R-form 2 were 0.41 and 0.52 mM with Vmax being 530 and 18.5 mumol/min, respectively [corrected]. Again,, a much lower level of enantioselectivity of deamination was observed than that of D- and L-adenosine. These results indicate (i) different enantioselectivity of enantiomers 2 and 3 as HIV inhibitors and adenosine deaminase substrates and (ii) both R- and S-enantiomers 2 and 3 can function as nucleoside analogues with varied enantioselectivity for different enzymes or receptors.


Subject(s)
Adenine/analogs & derivatives , Antiviral Agents/chemical synthesis , HIV-1/drug effects , Adenine/chemical synthesis , Adenine/chemistry , Adenine/pharmacology , Adenosine Deaminase/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cytopathogenic Effect, Viral/drug effects , Deamination , Kinetics , Models, Molecular , Molecular Conformation , Stereoisomerism , Structure-Activity Relationship , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...