Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Winter Simul Conf ; 2017: 2662-2671, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29527094

ABSTRACT

In mammals, touch is encoded by sensory receptors embedded in the skin. For one class of receptors in the mouse, the architecture of its Merkel cells, unmyelinated neurites, and heminodes follow particular renewal and remodeling trends over hair cycle stages from ages 4 to 10 weeks. As it is currently impossible to observe such trends across a single animal's hair cycle, this work employs discrete event simulation to identify and evaluate policies of Merkel cell and heminode dynamics. Well matching the observed data, the results show that the baseline model replicates dynamic remodeling behaviors between stages of the hair cycle - based on particular addition and removal polices and estimated probabilities tied to constituent parts of Merkel cells, terminal branch neurites and heminodes. The analysis shows further that certain policies hold greater influence than others. This use of computation is a novel approach to understanding neuronal development.

2.
Cell Rep ; 17(7): 1719-1727, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27829143

ABSTRACT

Sensory tissues exposed to the environment, such as skin, olfactory epithelia, and taste buds, continuously renew; therefore, peripheral neurons must have mechanisms to maintain appropriate innervation patterns. Although somatosensory neurons regenerate after injury, little is known about how these neurons cope with normal target organ changes. To elucidate neuronal plasticity in healthy skin, we analyzed the structure of Merkel-cell afferents, which are gentle touch receptors, during skin remodeling that accompanies mouse hair-follicle regeneration. The number of Merkel cells is reduced by 90% and axonal arbors are simplified during active hair growth. These structures rebound within just days. Computational modeling predicts that Merkel-cell changes are probabilistic, but myelinated branch stability depends on Merkel-cell inputs. Electrophysiology and behavior demonstrate that tactile responsiveness is less reliable during active growth than in resting skin. These results reveal that somatosensory neurons display structural plasticity at the cost of impairment in the reliability of encoding gentle touch.


Subject(s)
Receptors, Cell Surface/metabolism , Skin/metabolism , Touch/physiology , Animals , Behavior, Animal , Computer Simulation , Hair/growth & development , Merkel Cells/metabolism , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...