Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12448, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816398

ABSTRACT

Precise control of microparticle movement is crucial in high throughput processing for various applications in scalable manufacturing, such as particle monolayer assembly and 3D bio-printing. Current techniques using acoustic, electrical and optical methods offer precise manipulation advantages, but their scalability is restricted due to issues such as, high input powers and complex fabrication and operation processes. In this work, we introduce the concept of capillary wave tweezers, where mm-scale capillary wave fields are dynamically manipulated to control the position of microparticles in a liquid volume. Capillary waves are generated in an open liquid volume using low frequency vibrations (in the range of 10-100 Hz) to trap particles underneath the nodes of the capillary waves. By shifting the displacement nodes of the waves, the trapped particles are precisely displaced. Using analytical and numerical models, we identify conditions under which a stable control over particle motion is achieved. By showcasing the ability to dynamically control the movement of microparticles, our concept offers a simple and high throughput method to manipulate particles in open systems.

2.
Langmuir ; 38(34): 10632-10641, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35977085

ABSTRACT

A versatile method for the creation of multitier hierarchical structured surfaces is reported, which optimizes both antiviral and hydrophobic (easy-clean) properties. The methodology exploits the availability of surface-active chemical groups while also manipulating both the surface micro- and nanostructure to control the way the surface coating interacts with virus particles within a liquid droplet. This methodology has significant advantages over single-tier structured surfaces, including the ability to overcome the droplet-pinning effect and in delivering surfaces with high static contact angles (>130°) and good antiviral efficacy (log kill >2). In addition, the methodology highlights a valuable approach for the creation of mechanically robust, nanostructured surfaces which can be prepared by spray application using nonspecialized equipment.


Subject(s)
Antiviral Agents , Nanostructures , Antiviral Agents/pharmacology , Hydrophobic and Hydrophilic Interactions , Nanostructures/chemistry , Surface Properties
3.
ACS Appl Mater Interfaces ; 13(38): 46076-46087, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34520158

ABSTRACT

Superhydrophobic coatings and slippery liquid-infused porous surfaces (SLIPS) have shown their potentials in self-cleaning, anti-icing, anti-erosion, and antibiofouling applications. Various studies have been done on controlling the droplet impact on such surfaces using passive methods such as modifying the lubricant layer thickness in SLIPS. Despite their effectiveness, passive methods lack on-demand control over the impact dynamics of droplets. This paper introduces a new method to actively control the droplet impact onto superhydrophobic and SLIPS surfaces using surface acoustic waves (SAWs). In this study, we designed and fabricated SLIPS on ZnO/aluminum thin-film SAW devices and investigated different scenarios of droplet impact on the surfaces compared to those on similar superhydrophobic-coated surfaces. Our results showed that SAWs have insignificant influences on the impact dynamics of a porous and superhydrophobic surface without an infused oil layer. However, after infusion with oil, SAW energy could be effectively transferred to the droplet, thus modifying its impact dynamics onto the superhydrophobic surface. Results showed that by applying SAWs, the spreading and retraction behaviors of the droplets are altered on the SLIPS surface, leading to a change in a droplet impact regime from deposition to complete rebound with altered rebounding angles. Moreover, the contact time was reduced up to 30% when applying SAWs on surfaces with an optimum oil lubricant thickness of ∼8 µm. Our work offers an effective way of applying SAW technology along with SLIPS to effectively reduce the contact time and alter the droplet rebound angles.

4.
Langmuir ; 35(28): 9146-9151, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31260319

ABSTRACT

A significant limitation for droplet mobility on solid surfaces is to overcome the inherent pinning of the droplet's contact line that occurs because of chemical/physical heterogeneities. A recent innovation is to use surface texture or porosity to create a stabilized lubricant surface. Droplets on such slippery liquid-infused porous surfaces (SLIPS)/lubricant-impregnated surfaces (LIS) are highly mobile because of the lubricant layer. Low pinning of the contact line reduces the energy required to move a droplet; however, it makes it difficult to accurately position the droplet or to stop its motion altogether. In this paper, a simple structure (step), as small as a few microns in height, is used to introduce controlled droplet pinning on a slippery substrate. The key effect is identified as the capillary force, arising from the interaction between the lubricant menisci created by the step and droplet. The effect of changing step height, lubricant thickness, and initial position on step-droplet interactions has been investigated, showing that droplets can both be repelled from and attracted to the step. To measure the adhesion strength, we report droplet detachment angle measurements under gravity and scaling of force with the lubricant thickness/step height ratio. Under certain conditions, the interaction strength is sufficient to ensure droplet-step attachment even when the surface is rotated to an upside-down orientation. These findings can motivate the design of SLIPS structures, capable of shedding or retaining droplets preferentially, for example, according to the size or wettability, relevant to applications from microfluidics to fog harvesting.

5.
Langmuir ; 35(11): 4197-4204, 2019 Mar 19.
Article in English | MEDLINE | ID: mdl-30759342

ABSTRACT

A fundamental limitation of liquids on many surfaces is their contact line pinning. This limitation can be overcome by infusing a nonvolatile and immiscible liquid or lubricant into the texture or roughness created in or applied onto the solid substrate so that the liquid of interest no longer directly contacts the underlying surface. Such slippery liquid-infused porous surfaces (SLIPS), also known as lubricant-impregnated surfaces, completely remove contact line pinning and contact angle hysteresis. However, although a sessile droplet may rest on such a surface, its contact angle can be only an apparent contact angle because its contact is now with a second liquid and not a solid. Close to the solid, the droplet has a wetting ridge with a force balance of the liquid-liquid and liquid-vapor interfacial tensions described by Neumann's triangle rather than Young's law. Here, we show how, provided the lubricant coating is thin and the wetting ridge is small, a surface free energy approach can be used to obtain an apparent contact angle equation analogous to Young's law using interfacial tensions for the lubricant-vapor and liquid-lubricant and an effective interfacial tension for the combined liquid-lubricant-vapor interfaces. This effective interfacial tension is the sum of the liquid-lubricant and the lubricant-vapor interfacial tensions or the liquid-vapor interfacial tension for a positive and negative spreading power of the lubricant on the liquid, respectively. Using this approach, we then show how Cassie-Baxter, Wenzel, hemiwicking, and other equations for rough, textured or complex geometry surfaces and for electrowetting and dielectrowetting can be used with the Young's law contact angle replaced by the apparent contact angle from the equivalent smooth lubricant-impregnated surface. The resulting equations are consistent with the literature data. These results enable equilibrium contact angle theory for sessile droplets on surfaces to be used widely for surfaces that retain a thin and conformal SLIPS coating.

6.
Nat Commun ; 9(1): 1380, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29643382

ABSTRACT

Droplet evaporation on solid surfaces is important in many applications including printing, micro-patterning and cooling. While seemingly simple, the configuration of evaporating droplets on solids is difficult to predict and control. This is because evaporation typically proceeds as a "stick-slip" sequence-a combination of pinning and de-pinning events dominated by static friction or "pinning", caused by microscopic surface roughness. Here we show how smooth, pinning-free, solid surfaces of non-planar topography promote a different process called snap evaporation. During snap evaporation a droplet follows a reproducible sequence of configurations, consisting of a quasi-static phase-change controlled by mass diffusion interrupted by out-of-equilibrium snaps. Snaps are triggered by bifurcations of the equilibrium droplet shape mediated by the underlying non-planar solid. Because the evolution of droplets during snap evaporation is controlled by a smooth topography, and not by surface roughness, our ideas can inspire programmable surfaces that manage liquids in heat- and mass-transfer applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...