Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Org Chem ; 89(3): 1556-1566, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38227951

ABSTRACT

Over the last century, nucleoside-based therapeutics have demonstrated remarkable effectiveness in the treatment of a wide variety of diseases from cancer to HIV. In addition, boron-containing drugs have recently emerged as an exciting and fruitful avenue for medicinal therapies. However, borononucleosides have largely been unexplored in the context of medicinal applications. Herein, we report the synthesis, isolation, and characterization of two novel boron-containing nucleoside compound libraries which may find utility as therapeutic agents. Our synthetic strategy employs efficient one-step substitution reactions between a diverse variety of nucleoside scaffolds and an assortment of n-alkyl potassium trifluoroborate-containing electrophiles. We demonstrated that these alkylation reactions are compatible with cyclic and acyclic nucleoside substrates, as well as increasing alkyl chain lengths. Furthermore, regioselective control of product formation can be readily achieved through manipulation of base identity and reaction temperature conditions.


Subject(s)
Boron , Nucleosides , Nucleosides/chemistry , Boron/chemistry , Boron Compounds , Alkylation
2.
Adv Sci (Weinh) ; 10(30): e2304074, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37632697

ABSTRACT

Protonic ceramic electrochemical cells (PCECs) offer promising paths for energy storage and conversion. Despite considerable achievements made, PCECs still face challenges such as physiochemical compatibility between componenets and suboptimal solid-solid contact at the interfaces between the electrolytes and electrodes. In this study, a novel approach is proposed that combines in situ electrochemical characterization of interfacial electrical sensor embedded PCECs and machine learning to quantify the contributions of different cell components to total degradation, as well as to predict the remaining useful life. The experimental results suggest that the overpotential induced by the oxygen electrode is 48% less than that of oxygen electrode/electrolyte interfacial contact for up to 1171 h. The data-driven machine learning simulation predicts the RUL of up to 2132 h. The root cause of degradation is overpotential increase induced by oxygen electrode, which accounts for 82.9% of total cell degradation. The success of the failure diagnostic model is demonstrated by its consistency with degradation modes that do not manifest in electrolysis fade during early real operations. This synergistic approach provides valuable insights into practical failure diagnosis of PCECs and has the potential to revolutionize their development by enabling improved performance prediction and material selection for enhanced durability and efficiency.

3.
ACS Appl Mater Interfaces ; 15(26): 31430-31437, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37339427

ABSTRACT

Thin solid oxide films are crucial for developing high-performance solid oxide-based electrochemical devices aimed at decarbonizing the global energy system. Among various methods, ultrasonic spray coating (USC) can provide the throughput, scalability, quality consistency, roll-to-roll compatibility, and low material waste necessary for scalable production of large-sized solid oxide electrochemical cells. However, due to the large number of USC parameters, systematic parameter optimization is required to ensure optimal settings. However, the optimizations in previous literature are either not discussed or not systematic, facile, and practical for scalable production of thin oxide films. In this regard, we propose an USC optimization process assisted with mathematical models. Using this method, we obtained optimal settings for producing high-quality, uniform 4 × 4 cm2 oxygen electrode films with a consistent thickness of ∼27 µm in 1 min in a facile and systematic way. The quality of the films is evaluated at both micrometer and centimeter scales and meets desirable thickness and uniformity criteria. To validate the performance of USC-fabricated electrolytes and oxygen electrodes, we employ protonic ceramic electrochemical cells, which achieve a peak power density of 0.88 W cm-2 in the fuel cell mode and a current density of 1.36 A cm-2 at 1.3 V in the electrolysis mode, with minimal degradation over a period of 200 h. These results demonstrate the potential of USC as a promising technology for scalable production of large-sized solid oxide electrochemical cells.

4.
Membranes (Basel) ; 13(4)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37103837

ABSTRACT

Carbon capture has been an important topic of the twenty-first century because of the elevating carbon dioxide (CO2) levels in the atmosphere. CO2 in the atmosphere is above 420 parts per million (ppm) as of 2022, 70 ppm higher than 50 years ago. Carbon capture research and development has mostly been centered around higher concentration flue gas streams. For example, flue gas streams from steel and cement industries have been largely ignored due to lower associated CO2 concentrations and higher capture and processing costs. Capture technologies such as solvent-based, adsorption-based, cryogenic distillation, and pressure-swing adsorption are under research, but many suffer from higher costs and life cycle impacts. Membrane-based capture processes are considered cost-effective and environmentally friendly alternatives. Over the past three decades, our research group at Idaho National Laboratory has led the development of several polyphosphazene polymer chemistries and has demonstrated their selectivity for CO2 over nitrogen (N2). Poly[bis((2-methoxyethoxy)ethoxy)phosphazene] (MEEP) has shown the highest selectivity. A comprehensive life cycle assessment (LCA) was performed to determine the life cycle feasibility of the MEEP polymer material compared to other CO2-selective membranes and separation processes. The MEEP-based membrane processes emit at least 42% less equivalent CO2 than Pebax-based membrane processes. Similarly, MEEP-based membrane processes produce 34-72% less CO2 than conventional separation processes. In all studied categories, MEEP-based membranes report lower emissions than Pebax-based membranes and conventional separation processes.

5.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-37061790

ABSTRACT

Waste plastic presently accumulates in landfills or the environment. While natural microbial metabolisms can degrade plastic polymers, biodegradation of plastic is very slow. This study demonstrates that chemical deconstruction of polyethylene terephthalate (PET) with ammonium hydroxide can replace the rate limiting step (depolymerization) and by producing plastic-derived terephthalic acid and terephthalic acid monoamide. The deconstructed PET (DCPET) is neutralized with phosphoric acid prior to bioprocessing, resulting in a product containing biologically accessible nitrogen and phosphorus from the process reactants. Three microbial consortia obtained from compost and sediment degraded DCPET in ultrapure water and scavenged river water without addition of nutrients. No statistically significant difference was observed in growth rate compared to communities grown on DCPET in minimal culture medium. The consortia were dominated by Rhodococcus spp., Hydrogenophaga spp., and many lower abundance genera. All taxa were related to species known to degrade aromatic compounds. Microbial consortia are known to confer flexibility in processing diverse substrates. To highlight this, we also demonstrate that two microbial consortia can grow on similarly deconstructed polyesters, polyamides, and polyurethanes in water instead of medium. Our findings suggest that microbial communities may enable flexible bioprocessing of mixed plastic wastes when coupled with chemical deconstruction.


Subject(s)
Microbiota , Plastics , Plastics/metabolism , Ammonium Hydroxide , Biodegradation, Environmental , Water
6.
Nat Commun ; 13(1): 3789, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35778388

ABSTRACT

This work reports a dimethyl ether-driven fractional crystallization process for separating rare earth elements and transition metals. The process has been successfully applied in the treatment of rare earth element-bearing permanent magnet leachates as an atom-efficient, reagent-free separation method. Using ~5 bar pressure, the solvent was dissolved into the aqueous system to displace the contained metal salts as solid precipitates. Treatments at distinct temperatures ranging from 20-31 °C enable crystallization of either lanthanide-rich or transition metal-rich products, with single-stage solute recovery of up to 95.9% and a separation factor as high as 704. Separation factors increase with solution purity, suggesting feasibility for eco-friendly solution treatments in series and parallel to purify aqueous material streams. Staged treatments are demonstrated as capable of further improving the separation factor and purity of crystallized products. Upon completion of a crystallization, the solvent can be recovered with high efficiency at ambient pressure. This separation process involves low energy and reagent requirements and does not contribute to waste generation.

7.
Org Lett ; 22(24): 9427-9432, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33232161

ABSTRACT

The first total synthesis of (-)-TAN-2483B, a fungal metabolite possessing a densely functionalized furo[3,4-b]pyran-5-one framework, is achieved in 14 steps from d-mannose. Generation of the 2,6-trans-pyran is by cyclopropane ring expansion followed by α-selective alkynylation. Julia-Kocienski olefination introduces the E-propenyl side chain. Alkyne functionalization and carbonylation stereoselectively establish the bicyclic core of (-)-TAN-2483B. Inhibition of kinases Btk and Bmx, bacterial priority pathogens, and cytokine production in splenocytes indicates promising therapeutic potential.


Subject(s)
Cyclopropanes/chemistry , Fungi/metabolism , Lactones/chemical synthesis , Pyrans/chemical synthesis , Fungi/chemistry , Lactones/chemistry , Molecular Structure , Pyrans/chemistry , Stereoisomerism
8.
ACS Appl Mater Interfaces ; 12(27): 30787-30795, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32531150

ABSTRACT

An effective cross-linking technique allows a viscous and highly gas-permeable hydrophilic polyphosphazene to be cast as solid membrane films. By judicious blending with other polyphosphazenes to improve the mechanical properties, a membrane exhibiting the highest CO2 permeability (610 barrer) among polyphosphazenes combined with a good CO2/N2 selectivity (35) was synthesized and described here. The material demonstrates performance stability after 500 h of exposure to a coal-fired power plant flue gas, making it attractive for use in carbon capture applications. Its CO2/N2 selectivity under conditions up to full humidity is also stable, and although the gas permeability does decline, the performance is fully recovered upon drying. The high molecular weight of these heteropolymers also allows them to be cast as a thin selective layer on an asymmetric porous membrane, yielding a CO2 permeance of 1200 GPU and a CO2/N2 pure gas selectivity of 31, which does not decline over 2000 h. In addition to gas separation membranes, this cross-linked polyphosphazene can potentially be extended to other applications, such as drug delivery or proton exchange membranes, which take advantage of the polyphosphazene's versatile chemistry.

9.
Nat Commun ; 11(1): 1907, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32312963

ABSTRACT

The protonic ceramic electrochemical cell (PCEC) is an emerging and attractive technology that converts energy between power and hydrogen using solid oxide proton conductors at intermediate temperatures. To achieve efficient electrochemical hydrogen and power production with stable operation, highly robust and durable electrodes are urgently desired to facilitate water oxidation and oxygen reduction reactions, which are the critical steps for both electrolysis and fuel cell operation, especially at reduced temperatures. In this study, a triple conducting oxide of PrNi0.5Co0.5O3-δ perovskite is developed as an oxygen electrode, presenting superior electrochemical performance at 400~600 °C. More importantly, the self-sustainable and reversible operation is successfully demonstrated by converting the generated hydrogen in electrolysis mode to electricity without any hydrogen addition. The excellent electrocatalytic activity is attributed to the considerable proton conduction, as confirmed by hydrogen permeation experiment, remarkable hydration behavior and computations.

10.
RSC Adv ; 10(49): 29516-29527, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-35521115

ABSTRACT

Twelve water miscible organic solvents (MOS): acetone, tetrahydrofuran, isopropanol, acetonitrile, dimethyl sulfoxide, 1,4-dioxane, dimethylacetamide, N-methyl-2-pyrrolidone, trifluoroethanol, isopropylamine, dimethylformamide, and dimethyl ether (DME) were used to produce ternary mixtures of water-NaCl-MOS relevant to MOS-driven fractional precipitation. The aqueous-phase composition of the ternary mixture at liquid-liquid equilibrium and liquid-solid endpoint was established through quantitative nuclear magnetic resonance and mass balance. The results highlight the importance of considering the hydrated concentrations of salts and suggest that at high salt concentrations and low MOS concentration, the salt concentration is governed by competition between the salt ions and MOS molecules. Under these conditions a LS phase boundary is established, over which one mole of salt is replaced by one mole of MOS (solute displacement). At higher MOS concentrations, MOS with higher water affinity deviate from the one-to-one solute exchange but maintain a LS boundary with a homogenous liquid phase, while MOS with lower water affinity form a liquid-liquid phase boundary. DME is found to function effectively as an MOS for fractional precipitation, precipitating 97.7% of the CaSO4 from a saturated solution, a challenging scalant. DME-driven water softening recycles the DME within the system improving the atom-efficiency over existing seawater desalination pretreatments by avoiding chemical consumption.

11.
Chem Asian J ; 14(8): 1230-1237, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30618187

ABSTRACT

The fungal metabolite TAN-2483B has a 2,6-trans-relationship across the pyran ring of its furo[3,4-b]pyran-5-one core, which has thwarted previous attempts at its synthesis. We have now developed a chiral pool approach to this core and prepared side-chain analogues of TAN-2483B. The synthesis relies on ring expansion of a reactive furan ring-fused dibromocyclopropane and alkynylation of the resulting pyran. The furan ring is constructed by palladium-catalysed carbonylative lactonisation. Various side-chains are appended through Wittig-type chemistry. The prepared analogues showed micromolar activity towards cancer cell lines HL-60, 1A9 and MCF-7 and certain human disease-relevant kinases, including Bruton's tyrosine kinase (Btk).


Subject(s)
Antineoplastic Agents/chemical synthesis , Lactones/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Pyrans/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Lactones/chemical synthesis , Lactones/pharmacology , Molecular Structure , Phosphotransferases/antagonists & inhibitors , Phosphotransferases/metabolism , Protein Kinase Inhibitors/pharmacology , Pyrans/chemical synthesis , Pyrans/pharmacology , Structure-Activity Relationship
12.
J Phys Chem B ; 119(22): 6766-75, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-25938723

ABSTRACT

A density functional theory (DFT) analysis has been performed to explore the impact of steric interactions on the function of switchable polarity solvents (SPS) and their implications on a quantitative structure-activity relationship (QSAR) model previously proposed for SPS. An X-ray crystal structure of the N,N-dimethylcyclohexylammonium bicarbonate (Hdmcha) salt has been solved as an asymmetric unit containing two cation/anion pairs, with a hydrogen bonding interaction observed between the bicarbonate anions, as well as between the cation and anion in each pair. DFT calculations provide an optimized structure of Hdmcha that closely resembles experimental data and reproduces the cation/anion interaction with the inclusion of a dielectric field. Relaxed potential energy surface (PES) scans have been performed on Hdmcha-based computational model compounds, differing in the size of functional group bonded to the nitrogen center, to assess the steric impact of the group on the relative energy and structural properties of the compound. Results suggest that both the length and amount of branching associated with the substituent impact the energetic limitations on rotation of the group along the N-R bond and NC-R bond, and disrupt the energy minimized position of the hydrogen bonded bicarbonate group. The largest interaction resulted from functional groups that featured five bonds between the ammonium proton and a proton on a functional group with the freedom of rotation to form a pseudo six membered ring which included both protons.


Subject(s)
Quantum Theory , Solvents/chemistry , Alkanes/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Conformation , Quantitative Structure-Activity Relationship , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...