Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Assay Drug Dev Technol ; 13(5): 266-76, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26107610

ABSTRACT

In this study, we describe the evaluation of a cell-based protein stability assay using ß-galactosidase fragment complementation technology performed in two independent laboratories. The assay is based on the ability of certain ligands to bind to a protein leading to a ligand-protein complex that has a different stability than the free protein. The assay employed a prolabeled-tagged MEK1 kinase stably expressed in A549 cells and this was used to evaluate focused sets of compounds containing known MEK1inhibitors as well as a random set of compounds. An assay using a prolabeled-tagged lysine methyltransferase known as G9a expressed in A549 cells was used as a counterscreen. In one study, it was found that the majority of MEK1 inhibitors were either found as inactive (52%) or showed a selective inhibitory response (18%) in the cell-based MEK1 assay; however, eight compounds showed a specific activation response consistent with stabilization of MEK1 in cells. Examination of these stabilizing compounds showed that three of these were analogs of hypothemycin, a known covalent allosteric MEK1 inhibitor, while the remaining compounds covered one structural class. Both laboratories were able to confirm activity in the cell-based MEK1 assay for known MEK1 inhibitors and found that this activity was highly selective over the G9a counterscreen assay. Screening of a mechanism of action library containing compounds with bioactivity annotations against the cell-based MEK1 assay did not reveal any mechanisms leading to an increase in signal other than inhibitors of MEK1. This study supports that the MEK1 cellular protein stability assay is sensitive to certain MEK1 inhibitors, often noncompetitive inhibitors with respect to ATP. The cellular stability assay format could be useful to rapidly filter kinase inhibitor hit lists for allosteric kinase inhibitors and support target engagement in cells.


Subject(s)
MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/metabolism , Protein Kinase Inhibitors/metabolism , Cell Line, Tumor , Drug Screening Assays, Antitumor/methods , Humans , Ligands , Protein Binding/physiology , Protein Kinase Inhibitors/pharmacology
2.
J Med Chem ; 57(20): 8249-67, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25271963

ABSTRACT

Epidermal growth factor receptor (EGFR) inhibitors have been used clinically in the treatment of non-small-cell lung cancer (NSCLC) patients harboring sensitizing (or activating) mutations for a number of years. Despite encouraging clinical efficacy with these agents, in many patients resistance develops leading to disease progression. In most cases, this resistance is in the form of the T790M mutation. In addition, EGFR wild type receptor inhibition inherent with these agents can lead to dose limiting toxicities of rash and diarrhea. We describe herein the evolution of an early, mutant selective lead to the clinical candidate AZD9291, an irreversible inhibitor of both EGFR sensitizing (EGFRm+) and T790M resistance mutations with selectivity over the wild type form of the receptor. Following observations of significant tumor inhibition in preclinical models, the clinical candidate was administered clinically to patients with T790M positive EGFR-TKI resistant NSCLC and early efficacy has been observed, accompanied by an encouraging safety profile.


Subject(s)
Acrylamides/pharmacology , Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Carcinoma, Non-Small-Cell Lung/genetics , Chemistry Techniques, Synthetic , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/genetics , Female , Humans , Inhibitory Concentration 50 , Lung Neoplasms/genetics , Male , Mice , Middle Aged , Mutation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Rats, Inbred Strains , Xenograft Model Antitumor Assays
3.
Cancer Discov ; 4(9): 1046-61, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24893891

ABSTRACT

UNLABELLED: First-generation EGFR tyrosine kinase inhibitors (EGFR TKI) provide significant clinical benefit in patients with advanced EGFR-mutant (EGFRm(+)) non-small cell lung cancer (NSCLC). Patients ultimately develop disease progression, often driven by acquisition of a second T790M EGFR TKI resistance mutation. AZD9291 is a novel oral, potent, and selective third-generation irreversible inhibitor of both EGFRm(+) sensitizing and T790M resistance mutants that spares wild-type EGFR. This mono-anilino-pyrimidine compound is structurally distinct from other third-generation EGFR TKIs and offers a pharmacologically differentiated profile from earlier generation EGFR TKIs. Preclinically, the drug potently inhibits signaling pathways and cellular growth in both EGFRm(+) and EGFRm(+)/T790M(+) mutant cell lines in vitro, with lower activity against wild-type EGFR lines, translating into profound and sustained tumor regression in EGFR-mutant tumor xenograft and transgenic models. The treatment of 2 patients with advanced EGFRm(+) T790M(+) NSCLC is described as proof of principle. SIGNIFICANCE: We report the development of a novel structurally distinct third-generation EGFR TKI, AZD9291, that irreversibly and selectively targets both sensitizing and resistant T790M(+) mutant EGFR while harboring less activity toward wild-type EGFR. AZD9291 is showing promising responses in a phase I trial even at the first-dose level, with first published clinical proof-of-principle validation being presented.


Subject(s)
Acrylamides/therapeutic use , Aniline Compounds/therapeutic use , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/therapeutic use , Acrylamides/chemistry , Acrylamides/pharmacology , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , ErbB Receptors/chemistry , Female , Genes, erbB-2 , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Models, Molecular , Molecular Conformation , Phosphorylation , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Treatment Outcome , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
4.
J Med Chem ; 56(17): 7025-48, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-23930994

ABSTRACT

A novel series of small-molecule inhibitors has been developed to target the double mutant form of the epidermal growth factor receptor (EGFR) tyrosine kinase, which is resistant to treatment with gefitinib and erlotinib. Our reported compounds also show selectivity over wild-type EGFR. Guided by molecular modeling, this series was evolved to target a cysteine residue in the ATP binding site via covalent bond formation and demonstrates high levels of activity in cellular models of the double mutant form of EGFR. In addition, these compounds show significant activity against the activating mutations, which gefitinib and erlotinib target and inhibition of which gives rise to their observed clinical efficacy. A glutathione (GSH)-based assay was used to measure thiol reactivity toward the electrophilic functionality of the inhibitor series, enabling both the identification of a suitable reactivity window for their potency and the development of a reactivity quantitative structure-property relationship (QSPR) to support design.


Subject(s)
ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , ErbB Receptors/genetics , Models, Molecular , Mutation , Structure-Activity Relationship
5.
J Med Chem ; 55(11): 5003-12, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22612866

ABSTRACT

The design of compounds that selectively inhibit a single kinase is a significant challenge, particularly for compounds that bind to the ATP site. We describe here how protein-ligand crystal structure information was able both to rationalize observed selectivity and to guide the design of more selective compounds. Inhibition data from enzyme and cellular screens and the crystal structures of a range of ligands tested during the process of identifying selective inhibitors of FGFR provide a step-by-step illustration of the process. Steric effects were exploited by increasing the size of ligands in specific regions in such a way as to be tolerated in the primary target and not in other related kinases. Kinases are an excellent target class to exploit such approaches because of the conserved fold and small side chain mobility of the active form.


Subject(s)
Pyrazoles/chemistry , Pyrimidines/chemistry , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Animals , Binding Sites , Crystallography, X-Ray , Dimerization , Drug Design , Humans , Ligands , Mice , Mice, Knockout , Models, Molecular , Molecular Structure , Phosphorylation , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/chemistry , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...