Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 154(12): 124109, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33810685

ABSTRACT

The topology of two-dimensional network materials is investigated by persistent homology analysis. The constraint of two dimensions allows for a direct comparison of key persistent homology metrics (persistence diagrams, cycles, and Betti numbers) with more traditional metrics such as the ring-size distributions. Two different types of networks are employed in which the topology is manipulated systematically. In the first, comparatively rigid networks are generated for a triangle-raft model, which are representative of materials such as silica bilayers. In the second, more flexible networks are generated using a bond-switching algorithm, which are representative of materials such as graphene. Bands are identified in the persistence diagrams by reference to the length scales associated with distorted polygons. The triangle-raft models with the largest ordering allow specific bands Bn (n = 1, 2, 3, …) to be allocated to configurations of atoms separated by n bonds. The persistence diagrams for the more disordered network models also display bands albeit less pronounced. The persistent homology method thereby provides information on n-body correlations that is not accessible from structure factors or radial distribution functions. An analysis of the persistent cycles gives the primitive ring statistics, provided the level of disorder is not too large. The method also gives information on the regularity of rings that is unavailable from a ring-statistics analysis. The utility of the persistent homology method is demonstrated by its application to experimentally-obtained configurations of silica bilayers and graphene.

2.
Phys Rev E ; 101(4-1): 042309, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32422724

ABSTRACT

The properties of a wide range of two-dimensional network materials are investigated by developing a generalized network theory. The methods developed are shown to be applicable to a wide range of systems generated from both computation and experiment; incorporating atomistic materials, foams, fullerenes, colloidal monolayers, and geopolitical regions. The ring structure in physical networks is described in terms of the node degree distribution and the assortativity. These quantities are linked to previous empirical measures such as Lemaître's law and the Aboav-Weaire law. The effect on these network properties is explored by systematically changing the coordination environments, topologies, and underlying potential model of the physical system.

3.
RSC Adv ; 10(63): 38275-38280, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-35517566

ABSTRACT

A method to generate and simulate biological networks is discussed. An expanded Wooten-Winer-Weaire bond switching methods is proposed which allows for a distribution of node degrees in the network while conserving the mean average node degree. The networks are characterised in terms of their polygon structure and assortativities (a measure of local ordering). A wide range of experimental images are analysed and the underlying networks quantified in an analogous manner. Limitations in obtaining the network structure are discussed. A "network landscape" of the experimentally observed and simulated networks is constructed from the underlying metrics. The enhanced bond switching algorithm is able to generate networks spanning the full range of experimental observations.

4.
Phys Rev E ; 102(6-1): 062308, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33466098

ABSTRACT

Recent work has introduced the term "procrystalline" to define systems which lack translational symmetry but have an underlying high-symmetry lattice. The properties of five such two-dimensional (2D) lattices are considered in terms of the topologies of rings which may be formed from three-coordinate sites only. Parent lattices with full coordination numbers of four, five, and six are considered, with configurations generated using a Monte Carlo algorithm. The different lattices are shown to generate configurations with varied ring distributions. The different constraints imposed by the underlying lattices are discussed. Ring size distributions are obtained analytically for two of the simpler lattices considered (the square and trihexagonal nets). In all cases, the ring size distributions are compared to those obtained via a maximum entropy method. The configurations are analyzed with respect to the near-universal Lemaître curve (which connects the fraction of six-membered rings with the width of the ring size distribution) and three lattices are highlighted as rare examples of systems which generate configurations which do not map onto this curve. The assortativities are considered, which contain information on the degree of ordering of different sized rings within a given distribution. All of the systems studied show systematically greater assortativities when compared to those generated using a standard bond-switching method. Comparison is also made to two series of crystalline motifs which shown distinctive behavior in terms of both the ring size distributions and the assortativities. Procrystalline lattices are therefore shown to have fundamentally different behavior to traditional disordered and crystalline systems, indicative of the partial ordering of the underlying lattices.

5.
J Phys Condens Matter ; 30(50): 50LT02, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30460928

ABSTRACT

Two-dimensional networks are constructed by reference to a distribution of ring sizes and a parameter (α) which controls the preferred nearest-neighbour spatial correlations, and allows network topologies to be varied in a systematic manner. Our method efficiently utilizes the dual lattice and allows the range of physically-realisable configurations to be established and compared to networks observed for a wide range of real and model systems. Three different ring distributions are considered; a system containing five-, six- and seven-membered rings only (a proxy for amorphous graphene), the configuration proposed by Zachariasen in 1932, and a configuration observed experimentally for thin (near-2D) films of SiO2. The system energies are investigated as a function of the network topologies and the range of physically-realisable structures established and compared to known experimental results. The limits on the parameter α are discussed and compared to previous results. The evolution of the network structure as a function of topology is discussed in terms of the ring-ring pair distribution functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...