Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 7(7): e14052, 2019 04.
Article in English | MEDLINE | ID: mdl-30963722

ABSTRACT

Anthracycline chemotherapies are effective at reducing disease recurrence and mortality in cancer patients. However, these drugs also contribute to skeletal muscle wasting and dysfunction. The purpose of this study was to assess the impact of chronic doxorubicin (DOX) administration on satellite cell and capillary densities in different skeletal muscles. We hypothesized that DOX would reduce satellite cell and capillary densities of the soleus (SOL) and extensor digitorum longus (EDL) muscles, along with muscle fiber size. Ovariectomized female Sprague-Dawley rats were randomized to receive three bi-weekly intraperitoneal injections of DOX (4 mg∙kg-1 ; cumulative dose 12 mg∙kg-1 ) or vehicle (VEH; saline). Animals were euthanized 5d following the last injection and the SOL and EDL were dissected and prepared for immunohistochemical and RT-qPCR analyses. Relative to VEH, CSA of the SOL and EDL fibers were 26% and 33% smaller, respectively, in DOX (P < 0.05). In the SOL, satellite cell and capillary densities were 39% and 35% lower, respectively, in DOX (P < 0.05), whereas in the EDL satellite cell and capillary densities were unaffected by DOX administration (P > 0.05). Proliferating satellite cells were unaffected by DOX in the SOL (P > 0.05). In the SOL, MYF5 mRNA expression was increased in DOX (P < 0.05), while in the EDL MGF mRNA expression was reduced in DOX (P < 0.05). Chronic DOX administration is associated with reduced fiber size in the SOL and EDL; however, DOX appeared to reduce satellite cell and capillary densities only in the SOL. These findings highlight that therapeutic targets to protect skeletal muscle from DOX may vary across muscles.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Capillaries/drug effects , Doxorubicin/administration & dosage , Muscle, Skeletal/drug effects , Satellite Cells, Skeletal Muscle/drug effects , Animals , Female , Muscle, Skeletal/blood supply , Rats , Rats, Sprague-Dawley
2.
J Appl Physiol (1985) ; 124(4): 1012-1024, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29357482

ABSTRACT

Resistance exercise (RE) is a powerful stimulus for skeletal muscle adaptation. Previous data demonstrate that cyclooxygenase (COX)-inhibiting drugs alter the cellular mechanisms regulating the adaptive response of skeletal muscle. The purpose of this study was to determine whether prior consumption of the COX inhibitor acetaminophen (APAP) alters the immediate adaptive cellular response in human skeletal muscle after RE. In a double-blinded, randomized, crossover design, healthy young men ( n = 8, 25 ± 1 yr) performed two trials of unilateral knee extension RE (8 sets, 10 reps, 65% max strength). Subjects ingested either APAP (1,000 mg/6 h) or placebo (PLA) for 24 h before RE (final dose consumed immediately after RE). Muscle biopsies (vastus lateralis) were collected at rest and 1 h and 3 h after exercise. Mammalian target of rapamycin (mTOR) complex 1 signaling was assessed through immunoblot and immunohistochemistry, and mRNA expression of myogenic genes was examined via RT-qPCR. At 1 h p-rpS6Ser240/244 was increased in both groups but to a greater extent in PLA. At 3 h p-S6K1Thr389 was elevated only in PLA. Furthermore, localization of mTOR to the lysosome (LAMP2) in myosin heavy chain (MHC) II fibers increased 3 h after exercise only in PLA. mTOR-LAMP2 colocalization in MHC I fibers was greater in PLA vs. APAP 1 h after exercise. Myostatin mRNA expression was reduced 1 h after exercise only in PLA. MYF6 mRNA expression was increased 1 h and 3 h after exercise only in APAP. APAP consumption appears to alter the early adaptive cellular response of skeletal muscle to RE. These findings further highlight the mechanisms through which COX-inhibiting drugs impact the adaptive response of skeletal muscle to exercise. NEW & NOTEWORTHY The extent to which the cellular reaction to acetaminophen impacts the mechanisms regulating the adaptive response of human skeletal muscle to resistance exercise is not well understood. Consumption of acetaminophen before resistance exercise appears to suppress the early response of mTORC1 activity to acute resistance exercise. These data also demonstrate, for the first time, that resistance exercise elicits fiber type-specific changes in the intracellular colocalization of mTOR with the lysosome in human skeletal muscle.


Subject(s)
Acetaminophen/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Mechanistic Target of Rapamycin Complex 1/metabolism , Muscle, Skeletal/drug effects , Resistance Training , Adult , Cross-Over Studies , Double-Blind Method , Humans , Male , Muscle Proteins/biosynthesis , Muscle, Skeletal/metabolism , Young Adult
3.
Med Sci Sports Exerc ; 49(12): 2394-2403, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28767526

ABSTRACT

PURPOSE: This study aimed to assess the ability for exercise training performed before and during biweekly doxorubicin (DOX) administration to attenuate adverse effects of DOX on skeletal muscle. We hypothesized that DOX treatment would increase REDD1, impair mammalian target of rapamycin (mTOR) signaling, and reduce muscle fiber size, and that exercise training would attenuate these responses. METHODS: Eight-week-old ovariectomized female Sprague-Dawley rats were randomized to one of four treatments: exercise + DOX (Ex-Dox), Ex + vehicle (Ex-Veh), sedentary + DOX (Sed-Dox), and Sed + Veh (Sed-Veh). DOX (4 mg·kg) or vehicle (saline) intraperitoneal injections were performed biweekly for a total of three injections (cumulative dose, 12 mg·kg). Ex animals performed interval exercise (4 × 4 min, 85%-90% V˙O2peak) 5 d·wk starting 1 wk before the first injection and continued throughout study duration. Animals were euthanized ~5 d after the last injection, during which the soleus muscle was dissected and prepared for immunoblot and immunohistochemical analyses. RESULTS: REDD1 mRNA and protein were increased only in Sed-Dox (P < 0.05). The phosphorylation of mTOR and 4E-BP1 and MHC I and MHC IIa fiber size were lower in Sed-Dox versus Sed-Veh (P < 0.05). By contrast, REDD1 mRNA and protein, mTOR, 4E-BP1, and MHC I fiber size were not different between Ex-Dox and Ex-Veh (P > 0.05). LC3BI was higher, and the LC3BII/I ratio was lower in Sed-Dox versus Sed-Veh (P < 0.05) but not between Ex-Dox and Ex-Veh (P > 0.05). CONCLUSION: These data suggest that DOX may inhibit mTORC1 activity and reduce MHCI and MHCIIa fiber size, potentially through elevated REDD1, and that exercise may provide a therapeutic strategy to preserve skeletal muscle size during chronic DOX treatment.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Doxorubicin/toxicity , Muscle, Skeletal/drug effects , Physical Conditioning, Animal/physiology , Animals , Antibiotics, Antineoplastic/administration & dosage , Autophagy , Carrier Proteins/drug effects , Carrier Proteins/metabolism , Cell Size , Doxorubicin/administration & dosage , Female , Intracellular Signaling Peptides and Proteins , Models, Animal , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Phosphoproteins/drug effects , Phosphoproteins/metabolism , Phosphorylation , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Random Allocation , Rats, Sprague-Dawley , Repressor Proteins/drug effects , Repressor Proteins/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/drug effects , TOR Serine-Threonine Kinases/metabolism , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...