Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 6(1): 186, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36807406

ABSTRACT

Many species of pathogenic bacteria damage tissue cells by secreting toxins that form pores in plasma membranes. Here we show that glucocorticoids increase the intrinsic protection of tissue cells against pore-forming toxins. Dexamethasone protected several cell types against the cholesterol-dependent cytolysin, pyolysin, from Trueperella pyogenes. Dexamethasone treatment reduced pyolysin-induced leakage of potassium and lactate dehydrogenase, limited actin cytoskeleton alterations, reduced plasma membrane blebbing, and prevented cytolysis. Hydrocortisone and fluticasone also protected against pyolysin-induced cell damage. Furthermore, dexamethasone protected HeLa and A549 cells against the pore-forming toxins streptolysin O from Streptococcus pyogenes, and alpha-hemolysin from Staphylococcus aureus. Dexamethasone cytoprotection was not associated with changes in cellular cholesterol or activating mitogen-activated protein kinase (MAPK) cell stress responses. However, cytoprotection was dependent on the glucocorticoid receptor and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR). Collectively, our findings imply that glucocorticoids could be exploited to limit tissue damage caused by pathogens secreting pore-forming toxins.


Subject(s)
Cytoprotection , Glucocorticoids , Humans , Bacteria/metabolism , Cholesterol/metabolism , Dexamethasone
2.
Reproduction ; 164(3): 109-123, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35900358

ABSTRACT

In brief: Bovine granulosa cells need to be cultured with serum to generate inflammation in response to bacterial lipopolysaccharide. This study shows that it is cholesterol that facilitates this lipopolysaccharide-stimulated cytokine secretion. Abstract: During bacterial infections of the bovine uterus or mammary gland, ovarian granulosa cells mount inflammatory responses to lipopolysaccharide (LPS). In vitro, LPS stimulates granulosa cell secretion of the cytokines IL-1α and IL-1ß and the chemokine IL-8. These LPS-stimulated inflammatory responses depend on culturing granulosa cells with serum, but the mechanism is unclear. Here, we tested the hypothesis that cholesterol supports inflammatory responses to LPS in bovine granulosa cells. We used granulosa cells isolated from 4 to 8 mm and >8.5 mm diameter ovarian follicles and manipulated the availability of cholesterol. We found that serum or follicular fluid containing cholesterol increased LPS-stimulated secretion of IL-1α and IL-1ß from granulosa cells. Conversely, depleting cholesterol using methyl-ß-cyclodextrin diminished LPS-stimulated secretion of IL-1α, IL-1ß and IL-8 from granulosa cells cultured in serum. Follicular fluid contained more high-density lipoprotein cholesterol than low-density lipoprotein cholesterol, and granulosa cells expressed the receptor for high-density lipoprotein, scavenger receptor class B member 1 (SCARB1). Furthermore, culturing granulosa cells with high-density lipoprotein cholesterol, but not low-density lipoprotein or very low-density lipoprotein cholesterol, increased LPS-stimulated inflammation in granulosa cells. Cholesterol biosynthesis also played a role in granulosa cell inflammation because RNAi of mevalonate pathway enzymes inhibited LPS-stimulated inflammation. Finally, treatment with follicle-stimulating hormone, but not luteinising hormone, increased LPS-stimulated granulosa cell inflammation, and follicle-stimulating hormone increased SCARB1 protein. However, changes in inflammation were not associated with changes in oestradiol or progesterone secretion. Taken together, these findings imply that cholesterol supports inflammatory responses to LPS in granulosa cells.


Subject(s)
Interleukin-8 , Lipopolysaccharides , Animals , Cattle , Cells, Cultured , Cholesterol/metabolism , Estradiol/metabolism , Female , Follicle Stimulating Hormone/pharmacology , Granulosa Cells/metabolism , Inflammation/metabolism , Interleukin-8/metabolism , Lipopolysaccharides/pharmacology , Lipoproteins, HDL/metabolism , Progesterone/metabolism
3.
Front Immunol ; 13: 815775, 2022.
Article in English | MEDLINE | ID: mdl-35154132

ABSTRACT

Many species of bacteria produce toxins such as cholesterol-dependent cytolysins that form pores in cell membranes. Membrane pores facilitate infection by releasing nutrients, delivering virulence factors, and causing lytic cell damage - cytolysis. Oxysterols are oxidized forms of cholesterol that regulate cellular cholesterol and alter immune responses to bacteria. Whether oxysterols also influence the protection of cells against pore-forming toxins is unresolved. Here we tested the hypothesis that oxysterols stimulate the intrinsic protection of epithelial cells against damage caused by cholesterol-dependent cytolysins. We treated epithelial cells with oxysterols and then challenged them with the cholesterol-dependent cytolysin, pyolysin. Treating HeLa cells with 27-hydroxycholesterol, 25-hydroxycholesterol, 7α-hydroxycholesterol, or 7ß-hydroxycholesterol reduced pyolysin-induced leakage of lactate dehydrogenase and reduced pyolysin-induced cytolysis. Specifically, treatment with 10 ng/ml 27-hydroxycholesterol for 24 h reduced pyolysin-induced lactate dehydrogenase leakage by 88%, and reduced cytolysis from 74% to 1%. Treating HeLa cells with 27-hydroxycholesterol also reduced pyolysin-induced leakage of potassium ions, prevented mitogen-activated protein kinase cell stress responses, and limited alterations in the cytoskeleton. Furthermore, 27-hydroxycholesterol reduced pyolysin-induced damage in lung and liver epithelial cells, and protected against the cytolysins streptolysin O and Staphylococcus aureus α-hemolysin. Although oxysterols regulate cellular cholesterol by activating liver X receptors, cytoprotection did not depend on liver X receptors or changes in total cellular cholesterol. However, oxysterol cytoprotection was partially dependent on acyl-CoA:cholesterol acyltransferase (ACAT) reducing accessible cholesterol in cell membranes. Collectively, these findings imply that oxysterols stimulate the intrinsic protection of epithelial cells against pore-forming toxins and may help protect tissues against pathogenic bacteria.


Subject(s)
Bacteria/chemistry , Bacterial Proteins/toxicity , Bacterial Toxins/toxicity , Hemolysin Proteins/toxicity , Oxysterols/pharmacology , Virulence Factors/toxicity , Bacterial Proteins/chemistry , Bacterial Toxins/chemistry , Epithelial Cells/metabolism , HeLa Cells , Hemolysin Proteins/chemistry , Humans , Virulence Factors/chemistry
4.
FASEB J ; 35(10): e21889, 2021 10.
Article in English | MEDLINE | ID: mdl-34569656

ABSTRACT

Many species of pathogenic bacteria secrete toxins that form pores in mammalian cell membranes. These membrane pores enable the delivery of virulence factors into cells, result in the leakage of molecules that bacteria can use as nutrients, and facilitate pathogen invasion. Inflammatory responses to bacteria are regulated by the side-chain-hydroxycholesterols 27-hydroxycholesterol and 25-hydroxycholesterol, but their effect on the intrinsic protection of cells against pore-forming toxins is unclear. Here, we tested the hypothesis that 27-hydroxycholesterol and 25-hydroxycholesterol help protect cells against pore-forming toxins. We treated bovine endometrial epithelial and stromal cells with 27-hydroxycholesterol or 25-hydroxycholesterol, and then challenged the cells with pyolysin, which is a cholesterol-dependent cytolysin from Trueperella pyogenes that targets these endometrial cells. We found that treatment with 27-hydroxycholesterol or 25-hydroxycholesterol protected both epithelial and stomal cells against pore formation and the damage caused by pyolysin. The oxysterols limited pyolysin-induced leakage of potassium and lactate dehydrogenase from cells, and reduced cytoskeletal changes and cytolysis. This oxysterol cytoprotection against pyolysin was partially dependent on reducing cytolysin-accessible cholesterol in the cell membrane and on activating liver X receptors. Treatment with 27-hydroxycholesterol also protected the endometrial cells against Staphylococcus aureus α-hemolysin. Using mass spectrometry, we found 27-hydroxycholesterol and 25-hydroxycholesterol in uterine and follicular fluid. Furthermore, epithelial cells released additional 25-hydroxycholesterol in response to pyolysin. In conclusion, both 27-hydroxycholesterol and 25-hydroxycholesterol increased the intrinsic protection of bovine endometrial cells against pore-forming toxins. Our findings imply that side-chain-hydroxycholesterols may help defend the endometrium against pathogenic bacteria.


Subject(s)
Bacteria/chemistry , Bacterial Proteins/toxicity , Endometrium/metabolism , Hemolysin Proteins/toxicity , Hydroxycholesterols/pharmacology , Virulence Factors/toxicity , Animals , Bacterial Proteins/chemistry , Cattle , Female , Hemolysin Proteins/chemistry , Stromal Cells/metabolism , Virulence Factors/chemistry
5.
Reproduction ; 161(5): 499-512, 2021 05.
Article in English | MEDLINE | ID: mdl-33651711

ABSTRACT

Bovine granulosa cells are often exposed to energy stress, due to the energy demands of lactation, and exposed to lipopolysaccharide from postpartum bacterial infections. Granulosa cells mount innate immune responses to lipopolysaccharide, including the phosphorylation of mitogen-activated protein kinases and production of pro-inflammatory interleukins. Cellular energy depends on glycolysis, and energy stress activates intracellular AMPK (AMP-activated protein kinase), which in turn inhibits mTOR (mechanistic target of rapamycin). Here, we tested the hypothesis that manipulating glycolysis, AMPK or mTOR to mimic energy stress in bovine granulosa cells limits the inflammatory responses to lipopolysaccharide. We inhibited glycolysis, activated AMPK or inhibited mTOR in granulosa cells isolated from 4-8mm and from > 8.5 mm diameter ovarian follicles, and then challenged the cells with lipopolysaccharide and measured the production of interleukins IL-1α, IL-1ß, and IL-8. We found that inhibiting glycolysis with 2-deoxy-d-glucose reduced lipopolysaccharide-stimulated IL-1α > 80%, IL-1ß > 90%, and IL-8 > 65% in granulosa cells from 4-8 mm and from > 8.5 mm diameter ovarian follicles. Activating AMPK with AICAR also reduced lipopolysaccharide-stimulated IL-1α > 60%, IL-1ß > 75%, and IL-8 > 20%, and shortened the duration of lipopolysaccharide-stimulated phosphorylation of the mitogen-activated protein kinase ERK1/2 and JNK. However, only the mTOR inhibitor Torin 1, and not rapamycin, reduced lipopolysaccharide-stimulated IL-1α and IL-1ß. In conclusion, manipulating granulosa cell energy metabolism with a glycolysis inhibitor, an AMPK activator, or an mTOR inhibitor, limited inflammatory responses to lipopolysaccharide. Our findings imply that energy stress compromises ovarian follicle immune defences.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Energy Metabolism , Granulosa Cells/metabolism , Inflammation/prevention & control , Lipopolysaccharides/toxicity , Ovarian Follicle/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , AMP-Activated Protein Kinases/genetics , Animals , Cattle , Female , Glycolysis , Granulosa Cells/drug effects , Granulosa Cells/immunology , Immunity, Innate , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , MAP Kinase Signaling System , Ovarian Follicle/drug effects , Ovarian Follicle/immunology
6.
Theriogenology ; 150: 158-165, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31973964

ABSTRACT

Up to forty percent of dairy cows develop metritis or endometritis when pathogenic bacteria infect the uterus after parturition. However, resilient cows remain healthy even when exposed to the same pathogens. Here, we provide a perspective on the mechanisms that dairy cows use to prevent postpartum uterine disease. We suggest that resilient cows prevent the development of uterine disease using the three complementary defensive strategies of avoiding, tolerating and resisting infection with pathogenic bacteria. Avoidance maintains health by limiting the exposure to pathogens. Avoidance mechanisms include intrinsic behaviors to reduce the risk of infection by avoiding pathogens or infected animals, perhaps signaled by the fetid odor of uterine disease. Tolerance improves health by limiting the tissue damage caused by the pathogens. Tolerance mechanisms include neutralizing bacterial toxins, protecting cells against damage, enhancing tissue repair, and reprogramming metabolism. Resistance improves health by limiting the pathogen burden. Resistance mechanisms include inflammation driven by innate immunity and adaptive immunity, with the aim of killing and eliminating pathogenic bacteria. Farmers can also help cows prevent the development of postpartum uterine disease by avoiding trauma to the genital tract, reducing stress, and feeding animals appropriately during the transition period. Understanding the mechanisms of avoidance, tolerance and resistance to pathogens will inform strategies to generate resilient animals and prevent uterine disease.


Subject(s)
Cattle Diseases/microbiology , Uterine Diseases/veterinary , Animals , Cattle , Cattle Diseases/immunology , Disease Susceptibility/veterinary , Female , Postpartum Period , Uterine Diseases/immunology , Uterine Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...