Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 33: 156-62, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26141888

ABSTRACT

In this study, the mercury adsorption characteristics of HBr-modified fly ash in an entrained-flow reactor were investigated through thermal decomposition methods. The results show that the mercury adsorption performance of the HBr-modified fly ash was enhanced significantly. The mercury species adsorbed by unmodified fly ash were HgCl2, HgS and HgO. The mercury adsorbed by HBr-modified fly ash, in the entrained-flow reactor, existed in two forms, HgBr2 and HgO, and the HBr was the dominant factor promoting oxidation of elemental mercury in the entrained-flow reactor. In the current study, the concentration of HgBr2 and HgO in ash from the fine ash vessel was 4.6 times greater than for ash from the coarse ash vessel. The fine ash had better mercury adsorption performance than coarse ash, which is most likely due to the higher specific surface area and longer residence time.


Subject(s)
Air Pollutants/chemistry , Coal Ash/chemistry , Hydrobromic Acid/chemistry , Mercury Compounds/chemistry , Adsorption
2.
J Environ Sci (China) ; 25(9): 1858-64, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-24520729

ABSTRACT

The mercury flux in soils was investigated, which were amended by gypsums from flue gas desulphurization (FGD) units of coal-fired power plants. Studies have been carried out in confined greenhouses using FGD gypsum treated soils. Major research focus is uptakes of mercury by plants, and emission of mercury into the atmosphere under varying application rates of FGD gypsum, simulating rainfall irrigations, soils, and plants types. Higher FGD gypsum application rates generally led to higher mercury concentrations in the soils, the increased mercury emissions into the atmosphere, and the increased mercury contents in plants (especially in roots and leaves). Soil properties and plant species can play important roles in mercury transports. Some plants, such as tall fescue, were able to prevent mercury from atmospheric emission and infiltration in the soil. Mercury concentration in the stem of plants was found to be increased and then leveled off upon increasing FGD gypsum application. However, mercury in roots and leaves was generally increased upon increasing FGD gypsum application rates. Some mercury was likely absorbed by leaves of plants from emitted mercury in the atmosphere.


Subject(s)
Calcium Sulfate , Coal , Gases/chemistry , Mercury/chemistry , Power Plants , Soil Pollutants/chemistry , Sulfur/chemistry , Plants/chemistry , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...