Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Ann Surg Oncol ; 28(13): 8532-8543, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34091777

ABSTRACT

BACKGROUND: Pancreatic neuroendocrine tumors (PanNETs) are increasingly common. Experts debate whether small tumors should be resected. Tumor destruction via injection of cytotoxic agents could offer a minimal invasive approach to this controversy. We hypothesize that a new drug delivery system comprising chondroitin sulfate (CS) hydrogels loaded with sunitinib (SUN) suppresses tumor growth in PanNET cells. METHODS: Injectable hydrogels composed of CS modified with methacrylate groups (MA) were fabricated and loaded with SUN. Loading target was either 200 µg (SUN200-G) or 500 µg (SUN500-G) as well as sham hydrogel with no drug loading (SUN0-G). SUN release from hydrogels was monitored in vitro over time and cytotoxicity induced by the released SUN was evaluated using QGP-1 and BON1 PanNET cell lines. QGP-1 xenografts were developed in 35 mice and directly injected with 25 µL of either SUN200-G, SUN500-G, SUN0-G, 100 µL of Sunitinib Malate (SUN-inj), or given 40 mg/kg/day oral sunitinib (SUN-oral). RESULTS: SUN-loaded CSMA hydrogel retained complete in vitro cytotoxicity toward the QGP-1 PanNET and BON-1 PanNET cell lines for 21 days. Mouse xenograft models with QGP-1 PanNETs showed a significant delay in tumor growth in the SUN200/500-G, SUN-inj and SUN-oral groups compared with SUN0-G (p = 0.0014). SUN500-G hydrogels induced significantly more tumor necrosis than SUN0-G (p = 0.04). There was no difference in tumor growth delay between SUN200/500G, SUN-inj, and SUN-oral. CONCLUSIONS: This study demonstrates that CSMA hydrogels loaded with SUN suppress PanNETs growth. This drug delivery could approach represents a novel way to treat PanNETs and other neoplasms via intratumoral injection.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Animals , Cell Line, Tumor , Chondroitin Sulfates/therapeutic use , Drug Delivery Systems , Hydrogels , Mice , Neuroendocrine Tumors/drug therapy , Pancreatic Neoplasms/drug therapy , Sunitinib/therapeutic use
2.
Biomater Sci ; 9(4): 1272-1290, 2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33336667

ABSTRACT

Development of in vitro, preclinical cancer models that contain cell-driven microenvironments remains a challenge. Engineering of millimeter-scale, in vitro tumor models with spatially distinct regions that can be independently assessed to study tumor microenvironments has been limited. Here, we report the use of porous silk scaffolds to generate a high cell density neuroblastoma (NB) model that can spatially recapitulate changes resulting from cell and diffusion driven changes. Using COMSOL modeling, a scaffold holder design that facilitates stacking of thin, 200 µm silk scaffolds into a thick, bulk millimeter-scale tumor model (2, 4, 6, and 8 stacked scaffolds) and supports cell-driven oxygen gradients was developed. Cell-driven oxygen gradients were confirmed through pimonidazole staining. Post-culture, the stacked scaffolds were separated for analysis on a layer-by-layer basis. The analysis of each scaffold layer demonstrated decreasing DNA and increasing expression of hypoxia related genes (VEGF, CAIX, and GLUT1) from the exterior scaffolds to the interior scaffolds. Furthermore, the expression of hypoxia related genes at the interior of the stacks was comparable to that of a single scaffold cultured under 1% O2 and at the exterior of the stacks was comparable to that of a single scaffold cultured under 21% O2. The four-stack scaffold model underwent further evaluation to determine if a hypoxia activated drug, tirapazamine, induced reduced cell viability within the internal stacks (region of reduced oxygen) as compared with the external stacks. Decreased DNA content was observed in the internal stacks as compared to the external stacks when treated with tirapazamine, which suggests the internal scaffold stacks had higher levels of hypoxia than the external scaffolds. This stacked silk scaffold system presents a method for creating a single culture model capable of generating controllable cell-driven microenvironments through different stacks that can be individually assessed and used for drug screening.


Subject(s)
Neuroblastoma , Pharmaceutical Preparations , Humans , Porosity , Silk , Tissue Engineering , Tissue Scaffolds , Tumor Microenvironment
3.
J Biomed Mater Res A ; 109(8): 1393-1405, 2021 08.
Article in English | MEDLINE | ID: mdl-33252182

ABSTRACT

Neuroblastoma is the most common extracranial solid tumor of childhood and is associated with poor survival in high risk patients. Recently, dinutuximab (DNX) has emerged as an effective immunotherapy to treat patients with high risk neuroblastoma. DNX works through the induction of cell lysis via complement-dependent cytotoxicity (CDC) or antibody dependent cellular cytotoxicity (ADCC). However, one third of patients who undergo DNX treatment exhibit tumor relapse and the therapy is dose limited by side effects such as severe pain. To overcome delivery challenges of DNX, including large size and dose limiting side effects, we fabricated a delivery system capable of sustained local delivery of bioactive DNX utilizing silk fibroin. We evaluated the impact of silk properties (MW, crystallinity, and concentration) on release properties and confirmed the bioactivity of the release product. Additionally, we observed that the effectiveness of CDC induction by DNX could be correlated to the GD2 expression level of the target cells, with both the intravenous DNX formulation and the released DNX. Collectively, these data highlights a strategy to overcome delivery challenges and potentially improve therapeutic efficacy in cells expressing heterogenous levels of GD2.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Delayed-Action Preparations/chemistry , Fibroins/chemistry , Gangliosides/metabolism , Neuroblastoma/drug therapy , Animals , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Bombyx/chemistry , Cell Death/drug effects , Cell Line, Tumor , Drug Delivery Systems , Gangliosides/analysis , Neuroblastoma/metabolism
4.
Cancer Med ; 9(8): 2891-2903, 2020 04.
Article in English | MEDLINE | ID: mdl-32096344

ABSTRACT

Immunotherapy targeting GD2 is a primary treatment for patients with high-risk neuroblastoma. Dinutuximab is a monoclonal antibody with great clinical promise but is limited by side effects such as severe pain. Local delivery has emerged as a potential mechanism to deliver higher doses of therapeutics into the tumor bed, while limiting systemic toxicity. We aim to deliver dinutuximab locally in a lyophilized silk fibroin foam for the treatment of an orthotopic neuroblastoma mouse model. Dinutuximab-loaded silk fibroin foams were fabricated through lyophilization. In vitro release profile and bioactivity of the release through complement-dependent cytotoxicity were characterized. MYCN-amplified neuroblastoma cells (KELLY) were injected into the left gland of mice to generate an orthotopic neuroblastoma model. Once the tumor volume reached 100 mm3 , dinutuximab-, human IgG-, or buffer-loaded foams were implanted into the tumor and growth was monitored using high-resolution ultrasound. Post-resection histology was performed on tumors. Dinutuximab-loaded silk fibroin foams exhibited a burst release, with slow release thereafter in vitro with maintenance of bioactivity. The dinutuximab-loaded foam significantly inhibited xenograft tumor growth compared to IgG- and buffer-loaded foams. Histological analysis revealed the presence of dinutuximab within the tumor and neutrophils and macrophages infiltrating into dinutuximab-loaded silk foam. Tumors treated with local dinutuximab had decreased MYCN expression on histology compared to control or IgG-treated tumors. Silk fibroin foams offer a mechanism for local release of dinutuximab within the neuroblastoma tumor. This local delivery achieved a significant decrease in tumor growth rate in a mouse orthotopic tumor model.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Disease Models, Animal , Drug Delivery Systems , Fibroins/chemistry , Neuroblastoma/drug therapy , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Apoptosis , Cell Proliferation , Female , Freeze Drying , Humans , Mice , Mice, Nude , Neuroblastoma/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Molecules ; 25(4)2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32079339

ABSTRACT

Polymeric particles are ideal drug delivery systems due to their cellular uptake-relevant size. Microparticles could be developed for direct injection of drug formulations into a diseased site, such as a tumor, allowing for drug retention and slow drug exposure over time through sustained release mechanisms. Bombyx mori silk fibroin has shown promise as a biocompatible biomaterial both in research and the clinic. Silk has been previously used to make particles using an emulsion-based method with poly(vinyl alcohol) (PVA). In this study, polydimethylsiloxane-based microfluidic devices were designed, fabricated, and characterized to produce silk particles through self-association of silk when exposed to PVA. Three main variables resulted in differences in particle size and size distribution, or polydispersity index (PDI). Utilizing a co-flow microfluidic device decreased the PDI of the silk particles as compared to an emulsion-based method (0.13 versus 0.65, respectively). With a flow-focusing microfluidics device, lowering the silk flow rate from 0.80 to 0.06 mL/h resulted in a decrease in the median particle size from 6.8 to 3.0 µm and the PDI from 0.12 to 0.05, respectively. Lastly, decreasing the silk concentration from 12% to 2% resulted in a decrease in the median particle size from 5.6 to 2.8 µm and the PDI from 0.81 to 0.25, respectively. Binding and release of doxorubicin, a cytotoxic drug commonly used for cancer treatment, with the fabricated silk particles was evaluated. Doxorubicin loading in the silk particles was approximately 41 µg/mg; sustained doxorubicin release occurred over 23 days. When the cytotoxicity of the released doxorubicin was tested on KELLY neuroblastoma cells, significant cell death was observed. To demonstrate the potential for internalization of the silk particles, both KELLY and THP-1-derived macrophages were exposed to fluorescently labelled silk particles for up to 24 h. With the macrophages, internalization of the silk particles was observed. Additionally, THP-1 derived macrophages exposure to silk particles increased TNF-α secretion. Overall, this microfluidics-based approach for fabricating silk particles utilizing PVA as a means to induce phase separation and silk self-assembly is a promising approach to control particle size and size distribution. These silk particles may be utilized for a variety of biomedical applications including drug delivery to multiple cell types within a tumor microenvironment.


Subject(s)
Microtechnology/instrumentation , Polyvinyl Alcohol/chemistry , Rheology/instrumentation , Silk/chemistry , Animals , Bombyx , Cell Death/drug effects , Cell Line, Tumor , Doxorubicin/chemistry , Humans , Imaging, Three-Dimensional , Microfluidics , Molecular Weight , Neuroblastoma/pathology , Silk/pharmacology , THP-1 Cells , Tumor Necrosis Factor-alpha/metabolism
6.
BMC Biomed Eng ; 1: 33, 2019.
Article in English | MEDLINE | ID: mdl-32903387

ABSTRACT

Despite advances in cancer therapeutics, particularly in the area of immuno-oncology, successful treatment of neuroblastoma (NB) remains a challenge. NB is the most common cancer in infants under 1 year of age, and accounts for approximately 10% of all pediatric cancers. Currently, children with high-risk NB exhibit a survival rate of 40-50%. The heterogeneous nature of NB makes development of effective therapeutic strategies challenging. Many preclinical models attempt to mimic the tumor phenotype and tumor microenvironment. In vivo mouse models, in the form of genetic, syngeneic, and xenograft mice, are advantageous as they replicated the complex tumor-stroma interactions and represent the gold standard for preclinical therapeutic testing. Traditional in vitro models, while high throughput, exhibit many limitations. The emergence of new tissue engineered models has the potential to bridge the gap between in vitro and in vivo models for therapeutic testing. Therapeutics continue to evolve from traditional cytotoxic chemotherapies to biologically targeted therapies. These therapeutics act on both the tumor cells and other cells within the tumor microenvironment, making development of preclinical models that accurately reflect tumor heterogeneity more important than ever. In this review, we will discuss current in vitro and in vivo preclinical testing models, and their potential applications to therapeutic development.

7.
ACS Biomater Sci Eng ; 5(12): 6742-6754, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-33423492

ABSTRACT

Development of novel therapeutics is limited by a lack of accurate preclinical models for testing, specifically the inability of traditional 2D culture (monolayer) to accurately mimic in vivo tumors. In this work, lyophilized silk fibroin scaffolds were used to develop 3D neuroblastoma models (scaffolded NB) using multiple neuroblastoma cell lines (SK-N-AS, KELLY, and SH-SY5Y). Cells grown on scaffolds in low (1%) and ambient (21%) oxygen were compared to traditional monolayer cell culture. Monolayer cultures under low oxygen conditions exhibited increased expression of hypoxia-related genes such as VEGF, CAIX, and GLUT1. Scaffolded NB exhibited increased hypoxia-related gene expression under both low and ambient oxygen conditions. Pimonidazole staining confirmed the presence of hypoxic regions in the scaffolded NB. Cytokine secretion in the monolayer and scaffolded NB suggested differential secretion of cytokines due to both oxygen concentration (ex. VEGF, CCL3, and uPAR) and scaffolded culture (ex. IL-8, GM-CSF, and ITAC). Response to etoposide, a standard chemotherapeutic, demonstrated a reduced cytotoxicity in scaffolded culture as compared to monolayer culture regardless of oxygen concentration. However, use of a hypoxia-activated therapeutic, tirapazamine, exhibited cytotoxicity under scaffolded, ambient oxygen conditions and under monolayer and scaffolded, low oxygen conditions. Overall, this culture system provides a platform to study neuroblastoma and to assess the impact of hypoxia on tumor-relevant pathways and environments to aid in development of novel targeted therapeutics.

8.
J Mater Chem B ; 7(13): 2151-2161, 2019 04 07.
Article in English | MEDLINE | ID: mdl-32073574

ABSTRACT

Drug delivery systems capable of local sustained release of small molecule therapeutics remain a critical need in many fields, including oncology. Here, a system to create tunable hydrogels capable of modulating the loading and release of cationic small molecule therapeutics was developed. Chondroitin sulfate (CS) is a sulfated glycosaminoglycan that has many promising properties, including biocompatibility, biodegradation and chemically modifiable groups for both covalent and non-covalent bonding. CS was covalently modified with photocrosslinkable methacryloyl groups (CSMA) to develop an injectable hydrogel fabrication. Utilizing anionic groups, cationic drugs can be adsorbed and released from the hydrogels. This study demonstrates the synthesis of CSMA with a varying degree of substitution (DS) to generate hydrogels with varying swelling properties, maximum injection force, and drug release kinetics. The DS of the synthesized CSMA ranged from 0.05 ± 0.02 (2 h reaction) to 0.28 ± 0.02 (24 h reaction) with a DS of 1 representing 100% modification. The altered DS resulted in changes in hydrogel properties with the swelling of 20% CSMA hydrogels ranging from 42 (2 h reaction) to 13 (24 h reaction) and injection forces ranging from 18 N (2 h reaction) to 94 N (24 h reaction). The release of sunitinib, an oncology therapeutic that inhibits intracellular signaling by targeting multiple receptor tyrosine kinases, ranged from 18 µg per day (2 h reaction) to 9 µg per day (24 h reaction). While decreasing the DS increased the hydrogel swelling and rate of therapeutic release, it also limited the hydrogel fabrication range to only those containing 10% or higher CSMA. Blended polymer systems with poly(vinyl alcohol)-methacrylate (PVAMA) were fabricated to stabilize the resulting hydrogels via attenuating the swelling properties. Release profiles previously unattainable with the pure CSMA hydrogels were achieved with the blended hydrogel formulations. Overall, these studies identify a method to formulate tunable CSMA and blended CSMA/PVAMA hydrogels capable of sustained release of cationic therapeutics over six weeks with applications in oncology therapeutics.


Subject(s)
Chondroitin Sulfates/chemistry , Drug Carriers/chemistry , Hydrogels/chemistry , Methacrylates/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Chondroitin Sulfates/chemical synthesis , Chondroitin Sulfates/toxicity , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemical synthesis , Drug Carriers/toxicity , Drug Liberation , Humans , Hydrogels/chemical synthesis , Hydrogels/toxicity , Methacrylates/chemical synthesis , Methacrylates/toxicity , Molecular Structure , Sunitinib/chemistry , Sunitinib/pharmacology
9.
Cancer Discov ; 7(12): 1436-1449, 2017 12.
Article in English | MEDLINE | ID: mdl-28923910

ABSTRACT

Drug resistance poses a great challenge to targeted cancer therapies. In Hedgehog pathway-dependent cancers, the scope of mechanisms enabling resistance to SMO inhibitors is not known. Here, we performed a transposon mutagenesis screen in medulloblastoma and identified multiple modes of resistance. Surprisingly, mutations in ciliogenesis genes represent a frequent cause of resistance, and patient datasets indicate that cilia loss constitutes a clinically relevant category of resistance. Conventionally, primary cilia are thought to enable oncogenic Hedgehog signaling. Paradoxically, we find that cilia loss protects tumor cells from susceptibility to SMO inhibitors and maintains a "persister" state that depends on continuous low output of the Hedgehog program. Persister cells can serve as a reservoir for further tumor evolution, as additional alterations synergize with cilia loss to generate aggressive recurrent tumors. Together, our findings reveal patterns of resistance and provide mechanistic insights for the role of cilia in tumor evolution and drug resistance.Significance: Using a transposon screen and clinical datasets, we identified mutations in ciliogenesis genes as a new class of resistance to SMO inhibitors. Mechanistically, cilia-mutant tumors can either grow slowly in a "persister" state or evolve and progress rapidly in an "aggressive" state. Cancer Discov; 7(12); 1436-49. ©2017 AACR.See related commentary by Goranci-Buzhala et al., p. 1374This article is highlighted in the In This Issue feature, p. 1355.


Subject(s)
Cilia/genetics , Hedgehog Proteins/genetics , Retroelements/genetics , Smoothened Receptor/antagonists & inhibitors , Animals , Humans , Mice , Signal Transduction
10.
J Biomed Nanotechnol ; 12(9): 1782-97, 2016 Sep.
Article in English | MEDLINE | ID: mdl-29345889

ABSTRACT

Glioblastoma multiforme (GBM) is an aggressive and invasive brain tumor. Current interventional strategies have been minimally successful. Three key characteristics of GBMs are (1) enhanced resistance to apoptosis, (2) increased proliferation rate, and (3) increased invasion potential, making them difficult to treat. MicroRNAs (miRs) have demonstrated beneficial therapeutic intervention; particularly miRs 34a and 21, which have been implicated in regulation of apoptosis, senescence, and invasion of GBM tumor cells. MiR21 is anti-apoptotic and pro-proliferative, whereas miR34a is proapoptotic and an anti-invasive regulator in tumor cells. Our study investigates the effects of modulating both miR34a and miR21, in addition to comparing the two individual treatments. Using targeted cationic liposomes that bind to the epidermal growth factor receptor (EGFR), we delivered miR34a and/or anti-sense oligonucleotide to miR21 (ASO21) to GBM tumor cell lines, U87MG and A172, in vitro. Our data demonstrate that co-delivery of miR34a and ASO21 results in enhanced reduction in viability and invasion, while increasing senescence in vitro. Additionally, there were significant decreases in pro-invasion and -proliferation gene markers, as well as an increase in pro-apoptotic markers. In vivo results demonstrate that the combination of miR34a and ASO21 reduced tumor volume and proliferation of the A172 tumor cells. Accumulation of rhodamine encapsulated EGFR-targeted cationic liposomes was observed throughout the primary tumor bed after systemic injection. To our knowledge, we are the first to modulate multiple miRs, while using a targeted cationic liposomal delivery for miR-based therapy. These results demonstrate a potential clinically relevant, miR therapeutic strategy for GBM.


Subject(s)
Brain Neoplasms/metabolism , Cell Survival/drug effects , Cellular Senescence/drug effects , Drug Carriers/chemistry , Glioblastoma/metabolism , MicroRNAs/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Female , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Liposomes , MicroRNAs/genetics , MicroRNAs/pharmacology , Neoplasm Invasiveness/genetics , Rats , Rats, Nude
11.
Cancer Res ; 75(17): 3623-35, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26130651

ABSTRACT

Aberrant Shh signaling promotes tumor growth in diverse cancers. The importance of Shh signaling is particularly evident in medulloblastoma and basal cell carcinoma (BCC), where inhibitors targeting the Shh pathway component Smoothened (Smo) show great therapeutic promise. However, the emergence of drug resistance limits long-term efficacy, and the mechanisms of resistance remain poorly understood. Using new medulloblastoma models, we identify two distinct paradigms of resistance to Smo inhibition. Sufu mutations lead to maintenance of the Shh pathway in the presence of Smo inhibitors. Alternatively activation of the RAS-MAPK pathway circumvents Shh pathway dependency, drives tumor growth, and enhances metastatic behavior. Strikingly, in BCC patients treated with Smo inhibitor, squamous cell cancers with RAS/MAPK activation emerged from the antecedent BCC tumors. Together, these findings reveal a critical role of the RAS-MAPK pathway in drug resistance and tumor evolution of Shh pathway-dependent tumors.


Subject(s)
Carcinoma, Basal Cell/genetics , Hedgehog Proteins/genetics , Medulloblastoma/genetics , Receptors, G-Protein-Coupled/biosynthesis , ras Proteins/genetics , Anilides/administration & dosage , Animals , Carcinoma, Basal Cell/drug therapy , Carcinoma, Basal Cell/pathology , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Medulloblastoma/drug therapy , Medulloblastoma/pathology , Mice , Mitogen-Activated Protein Kinase Kinases/genetics , Pyridines/administration & dosage , Receptors, G-Protein-Coupled/antagonists & inhibitors , Signal Transduction/drug effects , Smoothened Receptor , Xenograft Model Antitumor Assays , ras Proteins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...