Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 23(24): 13672-13679, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34124734

ABSTRACT

Accurate potential energy curves were constructed for a manifold of electronic states of the hydroxyl dication using a highly correlated electronic structure approach (SA-CASSCF/MRCI+Q/aug-cc-pV5Z). The existence of a bound (meta)stable ground state and bound low-lying states for OH2+ are ruled out, but do not exclude the possibility of its transient formation and dissociation along the repulsive ground state potential energy curve. Our results do not support the conclusion reported for the observation of OH2+ by electron ionization from ground state OH+. Despite the repulsive character of the low-lying states, thermodynamic stability was indeed verified for the states 2 4Π and 3 4Σ- along with a series of metastable high-lying doublet states. For the (quasi)bound states, we obtained vibrational levels, spectroscopic parameters, and dipole moment functions. Using accurate transition dipole moment functions, we also evaluated bound-free emission transition probabilities and radiative lifetimes. For transitions from v'= 0, our estimates of 92.8 ns (4Π) and 9.3 ns (4Σ-) indicate that the ones obtained by a multichannel theory of predissociating states are too short (2-60 ps). Landau-Zener cross sections averaged over the Maxwellian distribution of relative velocities, and rate coefficients for the reaction O2+ + H → O+ + H+ were obtained using the potential energy curves of the states 4Π and 4Σ- associated with the channel O2+ + H and the repulsive ones dissociating into O+ + H+ leading to good results for the rate constant thus supporting its importance to explain the distribution of O+ in astrophysical plasmas.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 226: 117578, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31670030

ABSTRACT

The ground and the low lying electronic states of structures on the 1,3[H, C, As] potential energy surfaces were investigated with the highly correlated theoretical approaches CCSD(T), CCSD(T)-F12b, and CASSCF/MRCI along with the series of correlation consistent (aug-cc-pVnZ, n = D, T, Q, 5) basis sets. Energetic and spectroscopic parameters were obtained at the complete basis set limit, and the effect of core-valence correlation on these properties evaluated. Fundamental frequencies were also computed with the variational configuration interaction (VCI) approach. Heats of formation at 0 and 298.15 K were estimated for HCAs and CH, AsH, CAs, and HCAs, as well as the calculation of ionization potentials for HCAs. Comparisons of the present results with literature ones for the systems HCN/HNC, HCP/HPC highlight similarities and differences among these systems. Altogether, this investigation provides a very reliable characterization of the species on the surfaces and should guide future experimental studies on these systems.

3.
J Chem Phys ; 148(12): 124306, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29604832

ABSTRACT

A high level theoretical investigation of the low-lying electronic states of the diatomic dications SrO2+ and SrH2+ is presented for the first time along with experimental results of their mass spectra where they were detected. A global and reliable picture of the potential energy curves of the electronic states and the associated spectroscopic parameters provide quantitative results attesting to the thermodynamic stability of both species. Inclusion of spin-orbit interactions does not significantly change the energetic characterization. For SrO2+, the ground (X 3Σ-) and first excited (A 3Π, Te = 3971 cm-1) states are bound (De) by 15.94 kcal mol-1 and 4.71 kcal mol-1, respectively. Transition probabilities (Av'v″) have been evaluated and radiative lifetimes estimated for the vibrational states of A 3Π (v'), and transition probabilities are expected to be diagonally dominant and fall in the far-IR region of the spectrum. For the singlet states a 1Δ, b 1Π, c 1Σ+, and d 1Σ+, transition probabilities have also been calculated for all symmetry allowed transitions and the radiative lifetimes evaluated for selected vibrational states of the upper levels. The transitions associated with the band systems d 1Σ+-b 1Π and d 1Σ+-c 1Σ+, although falling in the yellow region of the spectrum, with overlapping bands, are expected to show quite distinct intensities since the transition moment associated with d 1Σ+-c 1Σ+ is much larger. For singlet transitions, the prediction of relative intensities using the Franck-Condon approximation fails in most of the cases. For SrH2+, only the ground state is bound (De = 6.54 kcal mol-1); with an equilibrium distance of 5.117 a0, the associated spectroscopic parameters (ωe, ωexe, Be) turned out to be (518.9, 32.77, 2.3227) in cm-1. For both species, dipole moment functions illustrate the variation of the molecular polarity with the internuclear distance.

4.
Angew Chem Int Ed Engl ; 55(25): 7111-5, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27159199

ABSTRACT

Nanorattles, comprised of a nanosphere inside a nanoshell, were employed as the next generation of plasmonic catalysts for oxidations promoted by activated O2 . After investigating how the presence of a nanosphere inside a nanoshell affected the electric-field enhancements in the nanorattle relative to a nanoshell and a nanosphere, the SPR-mediated oxidation of p-aminothiophenol (PATP) functionalized at their surface was investigated to benchmark how these different electric-field intensities affected the performances of Au@AgAu nanorattles, AgAu nanoshells and Au nanoparticles having similar sizes. The high performance of the nanorattles enabled the visible-light driven synthesis of azobenzene from aniline under ambient conditions. As the nanorattles allow the formation of electromagnetic hot spots without relying on the uncontrolled aggregation of nanostructures, it enables their application as catalysts in liquid phase under mild conditions using visible light as the main energy input.

5.
J Phys Chem B ; 120(8): 1660-9, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26670797

ABSTRACT

The aldol reaction catalyzed by an amine-substituted mesoporous silica nanoparticle (amine-MSN) surface was investigated using a large molecular cluster model (Si392O958C6NH361) combined with the surface integrated molecular orbital/molecular mechanics (SIMOMM) and fragment molecular orbital (FMO) methods. Three distinct pathways for the carbinolamine formation, the first step of the amine-catalyzed aldol reaction, are proposed and investigated in order to elucidate the role of the silanol environment on the catalytic capability of the amine-MSN material. The computational study reveals that the most likely mechanism involves the silanol groups actively participating in the reaction, forming and breaking covalent bonds in the carbinolamine step. Therefore, the active participation of MSN silanol groups in the reaction mechanism leads to a significant reduction in the overall energy barrier for the carbinolamine formation. In addition, a comparison between the findings using a minimal cluster model and the Si392O958C6NH361 cluster suggests that the use of larger models is important when heterogeneous catalysis problems are the target.

6.
Langmuir ; 31(37): 10272-8, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26335725

ABSTRACT

The surface-plasmon-resonance (SPR)-mediated catalytic activities of Ag and Au nanoparticles have emerged a relatively new frontier in catalysis in which visible light can be employed as an eco-friendly energy input to drive chemical reactions. Although this phenomenon has been reported for a variety of transformations, the effect of the nanoparticle shape and crystalline structure on the activities remains unclear. In this paper, we investigated the SPR-mediated catalytic activity of Ag quasi-spheres, cubes, triangular prisms, and wires toward the oxidation of p-aminothiophenol to p,p'-dimercaptoazobenzene by activated O2. The activities at 632.8 nm excitation followed the order triangular prisms and quasi-spheres > wires ≫ cubes. These results indicated that the shape, optical properties, and crystal structure played an important role in the detected SPR-mediated activities.

7.
J Chem Phys ; 142(2): 024316, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25591362

ABSTRACT

This work reports the first theoretical characterization of a manifold of electronic states of the as yet experimentally unknown monotellurium monohydride cation, TeH(+). Both Λ + S and Ω representations were described showing the twelve states correlating with the three lowest (Λ + S) dissociation channels, and the twenty five states associated with the five lowest Ω channels. The X (3)Σ(-) state is split into X1 0(+) and X2 1 separated by 1049 cm(-1); they are followed by the states a 2 (a (1)Δ) and b 0(+) (b (1)Σ(+)) higher in energy by 8554 and 17 383 cm(-1), respectively. These states can accommodate several vibrational energy levels. The potential energy curves of the Ω states arising from the bound A (3)Π, the weakly bound (1)Π, and the repulsive (5)Σ(-) states have a complex structure as shown by the very close avoided crossings just above ∼30 000 cm(-1). In particular, a double minima potential results for the state A1 2 that in principle could be probed experimentally through the A1 2-X2 1 system transitions. The states A2 1, b 0(+), and A4 0(+) offer possible routes to experimental investigations involving the ground state X1 0(+). Higher energy states are very dense and mostly repulsive. The high-level of the electronic structure calculations, by providing a global view of the electronic states and reliable spectroscopic parameters, is expected to further guide and motivate experimental studies on this species. Additional discussions on dipole and transition dipole moments, transition probabilities, radiative lifetimes, and a simulation of the single ionization spectrum complement the characterization of this system.

8.
Angew Chem Int Ed Engl ; 54(48): 14427-31, 2015 Nov 23.
Article in English | MEDLINE | ID: mdl-26768109

ABSTRACT

By a combination of theoretical and experimental design, we probed the effect of a quasi-single electron on the surface plasmon resonance (SPR)-mediated catalytic activities of Ag nanoparticles. Specifically, we started by theoretically investigating how the E-field distribution around the surface of a Ag nanosphere was influenced by static electric field induced by one, two, or three extra fixed electrons embedded in graphene oxide (GO) next to the Ag nanosphere. We found that the presence of the extra electron(s) changed the E-field distributions and led to higher electric field intensities. Then, we experimentally observed that a quasi-single electron trapped at the interface between GO and Ag NPs in Ag NPs supported on graphene oxide (GO-Ag NPs) led to higher catalytic activities as compared to Ag and GO-Ag NPs without electrons trapped at the interface, representing the first observation of catalytic enhancement promoted by a quasi-single electron.

9.
J Phys Chem A ; 118(51): 12080-8, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25365787

ABSTRACT

We report reaction cross sections, energy disposal, and rate constants for the OH + HBr → Br + H2O and OH + DBr → Br + HDO reactions from quasiclassical trajectory calculations using an ab initio potential energy surface [ de Oliveira-Filho , A. G. S. ; Ornellas , F. R. ; Bowman , J. M. J. Phys. Chem. Lett. 2014 , 5 , 706 - 712 ]. Comparison with available experiments are made and generally show good agreement.

10.
Phys Chem Chem Phys ; 16(20): 9530-7, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24728328

ABSTRACT

A manifold of electronic states correlating with the two lowest-lying dissociation channels of the iodocarbyne (CI) species is theoretically characterized for the first time in the literature. A contrast between the Λ + S and the relativistic (Ω) descriptions clearly shows the effect of perturbations on electronic states above 20 000 cm(-1) and the potential difficulties to detect them experimentally. For the bound states, spectroscopic parameters were evaluated, as well as the dipole moment functions. Similarly to CO, the polarity predicted for this iodocarbyne is C(δ-)I(δ+); as illustrated in the text, this is also the case for the other halocarbynes. As a potential mechanism for the experimental spectroscopic characterization of CI, we suggest the radiative association between C and I atoms, with light emitted in the red region of the visible spectra. Transition probabilities were also evaluated predicting very weak intensities. For the states 1/2(II) and 3/2(II), we have estimated radiative lifetimes of 7.1 and 714 ms, respectively.

11.
J Phys Chem Lett ; 5(4): 706-12, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-26270841

ABSTRACT

We report a permutationally invariant, ab initio potential energy surface (PES) for the OH + HBr → Br + H2O reaction. The PES is a fit to roughly 26 000 spin-free UCCSD(T)/cc-pVDZ-F12a energies and has no classical barrier to reaction. It is used in quasiclassical trajectory calculations with a focus on the thermal rate constant, k(T), over the temperature range 5 to 500 K. Comparisons with available experimental data over the temperature range 23 to 416 K are made using three approaches to treat the OH rotational and associated electronic partition function. All display an inverse temperature dependence of k(T) below roughly 160 K and a nearly constant temperature dependence above 160 K, in agreement with experiment. The calculated rate constant with no treatment of spin-orbit coupling is overall in the best agreement with experiment, being (probably fortuitously) within 20% of it.

12.
J Phys Chem A ; 117(48): 12703-10, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24246055

ABSTRACT

The O((3)P) + HBr → OH + Br and O((3)P) + DBr → OD + Br reactions are studied on a recent high-quality ab initio-based potential energy surface. Thermal rate constants over the 200-1000 K temperature range, calculated using variational transition-state theory (VTST) with the small-curvature tunneling (SCT) correction and quantum mechanical methods with the J-shifting approximation (QM/JS) for zero total angular momentum (J = 0), are reported. These results are compared to the available experimental data, which lie in the ranges of 221-554 and 295-419 K for O + HBr and O + DBr, respectively. The rate constants, in cm(3) molecule(-1) s(-1) and at 298 K, for the O + HBr reaction are 3.66 × 10(-14) for VTST, 3.80 × 10(-14) for QM/JS, and 3.66 × 10(-14) for the average of eight experimental measurements.

13.
J Chem Phys ; 138(22): 224309, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23781797

ABSTRACT

A high-level ab initio investigation of a manifold of electronic states of the diatomic dication TeH(2+) is presented. Potential energy curves for both Λ + S and relativistic (Ω) states are constructed not only making evident the metastability of this system, but also the large energy splitting due to spin-orbit interactions. This effect is also very significant in the region close to the crossing of the (2)Π and (4)Σ(-) states, where avoided crossings between the Ω states have a relatively large impact on the height of the energy barriers. In contrast to TeH, with only two bound states (X1 (2)Π3∕2 and X2 (2)Π1∕2) below about 25,000 cm(-1), in the case of TeH(2+) a much richer energy profile is obtained indicating various possibilities of electronic transitions. Guided by the results of this study, the experimental characterization of these states is now a challenge to spectroscopists. Since close to the equilibrium region the double positive charge is centered on the tellurium atom, the binding in this system can be rationalized as a simple covalent bond between the pz and s orbitals of Te(2+) and H, respectively. As the internuclear distance increases, the electron affinity of Te(2+) overcomes that of H(+) and the system dissociates into two singly charged fragments. A simulation of the double ionization spectra complements the characterization of the electronic states, and results of a mass spectrometric investigation corroborates the predicted transient existence of this metastable species.

14.
J Chem Phys ; 137(15): 154302, 2012 Oct 21.
Article in English | MEDLINE | ID: mdl-23083160

ABSTRACT

We present a detailed theoretical study of the stability of the gas-phase diatomic dications SnF(2+), SnCl(2+), and SnO(2+) using ab initio computer calculations. The ground states of SnF(2+), SnCl(2+), and SnO(2+) are thermodynamically stable, respectively, with dissociation energies of 0.45, 0.30, and 0.42 eV. Whereas SnF(2+) dissociates into Sn(2+) + F, the long range behaviour of the potential energy curves of SnCl(2+) and SnO(2+) is repulsive and wide barrier heights due to avoided crossing act as a kind of effective dissociation energy. Their equilibrium internuclear distances are 4.855, 5.201, and 4.852 a(0), respectively. The double ionisation energies (T(e)) to form SnF(2+), SnCl(2+), and SnO(2+) from their respective neutral parents are 25.87, 23.71, and 25.97 eV. We combine our theoretical work with the experimental results of a search for these doubly positively charged diatomic molecules in the gas phase. SnO(2+) and SnF(2+) have been observed for prolonged oxygen ((16)O(-)) ion beam sputtering of a tin metal foil and of tin (II) fluoride (SnF(2)) powder, respectively, for ion flight times of about 10(-5) s through a magnetic-sector mass spectrometer. In addition, SnCl(2+) has been detected for (16)O(-) ion surface bombardment of stannous (tin (II)) chloride (SnCl(2)) powder. To our knowledge, SnF(2+) is a novel gas-phase molecule, whereas SnCl(2+) had been detected previously by electron-impact ionization mass spectrometry, and SnO(2+) had been observed before by spark source mass spectrometry as well as by atom probe mass spectrometry. We are not aware of any previous theoretical studies of these molecular systems.

15.
J Chem Phys ; 136(17): 174316, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22583239

ABSTRACT

In this work, we report the construction of potential energy surfaces for the (3)A('') and (3)A(') states of the system O((3)P) + HBr. These surfaces are based on extensive ab initio calculations employing the MRCI+Q/CBS+SO level of theory. The complete basis set energies were estimated from extrapolation of MRCI+Q/aug-cc-VnZ(-PP) (n = Q, 5) results and corrections due to spin-orbit effects obtained at the CASSCF/aug-cc-pVTZ(-PP) level of theory. These energies, calculated over a region of the configuration space relevant to the study of the reaction O((3)P) + HBr → OH + Br, were used to generate functions based on the many-body expansion. The three-body potentials were interpolated using the reproducing kernel Hilbert space method. The resulting surface for the (3)A('') electronic state contains van der Waals minima on the entrance and exit channels and a transition state 6.55 kcal/mol higher than the reactants. This barrier height was then scaled to reproduce the value of 5.01 kcal/mol, which was estimated from coupled cluster benchmark calculations performed to include high-order and core-valence correlation, as well as scalar relativistic effects. The (3)A(') surface was also scaled, based on the fact that in the collinear saddle point geometry these two electronic states are degenerate. The vibrationally adiabatic barrier heights are 3.44 kcal/mol for the (3)A('') and 4.16 kcal/mol for the (3)A(') state.

16.
J Chem Phys ; 135(4): 044308, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21806120

ABSTRACT

Extensive ab initio calculations using a complete active space second-order perturbation theory wavefunction, including scalar and spin-orbit relativistic effects with a quadruple-zeta quality basis set were used to construct an analytical potential energy surface (PES) of the ground state of the [H, O, I] system. A total of 5344 points were fit to a three-dimensional function of the internuclear distances, with a global root-mean-square error of 1.26 kcal mol(-1). The resulting PES describes accurately the main features of this system: the HOI and HIO isomers, the transition state between them, and all dissociation asymptotes. After a small adjustment, using a scaling factor on the internal coordinates of HOI, the frequencies calculated in this work agree with the experimental data available within 10 cm(-1).

17.
J Phys Chem A ; 115(30): 8399-405, 2011 Aug 04.
Article in English | MEDLINE | ID: mdl-21707064

ABSTRACT

High-level CASSCF/MRCI calculations with a quintuple-ζ quality basis set are reported by characterizing for the first time a manifold of electronic states of the CAs radical yet to be investigated experimentally. Along with the potential energy curves and the associated spectroscopic constants, the dipole moment functions for selected electronic states as well as the transition dipole moment functions for the most relevant electronic transitions are also presented. Estimates of radiative transition probabilities and lifetimes complement this investigation, which also assesses the effect of spin-orbit interaction on the A (2)Π state. Whenever pertinent, comparisons of similarities and differences with the isovalent CN and CP radicals are made.

18.
Phys Chem Chem Phys ; 13(41): 18297-306, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21603705

ABSTRACT

Sputtering (ion surface bombardment) of various calcium-containing powder samples with an energetic (17 keV), high-current (16)O(-) beam has produced the diatomic dications of CaSi(2+), CaP(2+), CaF(2+), CaH(2+), CaCl(2+), CaBr(2+) and CaI(2+). These molecular gas-phase species have been identified in positive ion mass spectra at half-integer m/z values; their ion flight times through a magnetic-sector mass spectrometer were roughly 10(-5) s. Most of them appear to be novel molecular ions; the stability of the latter four (CaH(2+), CaCl(2+), CaBr(2+) and CaI(2+)) had been demonstrated in previous theoretical studies, whereas only CaF(2+) and CaBr(2+) had been observed before. Here we combine the results of our experimental search with a detailed theoretical study of the remaining three systems CaSi(2+), CaP(2+) and CaF(2+). All electronic states correlating with the first dissociation channel are characterized using high level ab initio electronic structure calculations. In their ground states, we find CaSi(2+) to be a long-lived metastable molecule, whereas CaF(2+) and CaP(2+) are thermodynamically stable, with respective equilibrium internuclear distances of 6.253, 4.740, and 5.731 a(0). CaSi(2+) has a well depth of 7116 (0.88) cm(-1) (eV) and a dissociation asymptote 7956 (0.99) cm(-1) (eV) below the ground state minimum. The dissociation energy of CaF(2+) is estimated to be 3404 (0.42) cm(-1) (eV), whereas for CaP(2+) we found 2547 (0.32) cm(-1) (eV), and a barrier height of 8118 (1.01) cm(-1) (eV). Their adiabatic double ionisation energies are 22.87, 16.91, and 17.32 eV, respectively, for the F, Si, and P containing dications.

19.
J Chem Phys ; 134(10): 104303, 2011 Mar 14.
Article in English | MEDLINE | ID: mdl-21405161

ABSTRACT

The doubly positively charged gas-phase molecules BrO(2+) and NBr(2+) have been produced by prolonged high-current energetic oxygen (17 keV (16)O(-)) ion surface bombardment (ion beam sputtering) of rubidium bromide (RbBr) and of ammonium bromide (NH(4)Br) powdered ionic salt samples, respectively, pressed into indium foil. These novel species were observed at half-integer m∕z values in positive ion mass spectra for ion flight times of roughly ∼12 µs through a magnetic-sector secondary ion mass spectrometer. Here we present these experimental results and combine them with a detailed theoretical investigation using high level ab initio calculations of the ground states of BrO(2+) and NBr(2+), and a manifold of excited electronic states. NBr(2+) and BrO(2+), in their ground states, are long-lived metastable gas-phase molecules with well depths of 2.73 × 10(4) cm(-1) (3.38 eV) and 1.62 × 10(4) cm(-1) (2.01 eV); their fragmentation channels into two monocations lie 2.31 × 10(3) cm(-1) (0.29 eV) and 2.14 × 10(4) cm(-1) (2.65 eV) below the ground state minimum. The calculated lifetimes for NBr(2+) (v(") < 35) and BrO(2+) (v(") < 18) are large enough to be considered stable against tunneling. For NBr(2+), we predicted R(e) = 3.051 a(0) and ω(e) = 984 cm(-1); for BrO(2+), we obtained 3.033 a(0) and 916 cm(-1), respectively. The adiabatic double ionization energies of BrO and NBr to form metastable BrO(2+) and NBr(2+) are calculated to be 30.73 and 29.08 eV, respectively. The effect of spin-orbit interactions on the low-lying (Λ + S) states is also discussed.

20.
J Chem Phys ; 132(19): 194316, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20499972

ABSTRACT

The low-lying doublet and quartet electronic states of the species SeF correlating with the first dissociation channel are investigated theoretically at a high-level of electronic correlation treatment, namely, the complete active space self-consistent field/multireference single and double excitations configuration interaction (CASSCF/MRSDCI) using a quintuple-zeta quality basis set including a relativistic effective core potential for the selenium atom. Potential energy curves for (Lambda+S) states and the corresponding spectroscopic properties are derived that allows for an unambiguous assignment of the only spectrum known experimentally as due to a spin-forbidden X (2)Pi-a (4) summation (-) transition, and not a A (2)Pi-X (2)Pi transition as assumed so far. For the bound excited doublets, yet unknown experimentally, this study is the first theoretical characterization of their spectroscopic properties. Also the spin-orbit coupling constant function for the X (2)Pi state is derived as well as the spin-orbit coupling matrix element between the X (2)Pi and a (4) summation (-) states. Dipole moment functions and vibrationally averaged dipole moments show SeF to be a very polar species. An overview of the lowest-lying spin-orbit (Omega) states completes this description.

SELECTION OF CITATIONS
SEARCH DETAIL
...