Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1355158, 2024.
Article in English | MEDLINE | ID: mdl-38577685

ABSTRACT

The effects of stress factors associated with climate change and agricultural management practices on microorganisms are often studied separately, and it remains to be determined how these factors impact the soil microbiome and, subsequently, plant growth characteristics. The aim of this study was to understand how the historical climate and agriculture to which soil microbes have been exposed can influence the growth characteristics of wheat seedlings and their associated bacterial communities. We collected soil from organic and conventional fields with different histories of climate conditions to extract microbes to inoculate wheat seeds under agar-based cultivation conditions. Within a growth period of 8 days, we monitored germination rates and time as well as seedling above-ground biomass and their associated bacterial communities. The results showed a positive interaction between conventional farming practices and an ambient climate for faster and higher germination rates. We demonstrate that soil microbial extracts from organic farming with experience of the future climate significantly enhanced above-ground biomass along with the diversity of bacterial communities associated with seedlings than other treatments. Such findings support the idea that organic agricultural practices not only mitigate the adverse effects of climate change but also promote the diversity of seedling-associated bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...