Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(3): 4202-4214, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35209662

ABSTRACT

This work presents a "half-etch" horizontal slot waveguide design based on SiN, where only the upper SiN layer is etched to form a strip that confines the mode laterally. The numerical modeling, fabrication, and characterization of passive waveguiding components are described. This novel slot waveguide structure was designed with on-chip light amplification in mind, for example with an Er-doped oxide spacer layer. Proof-of-concept racetrack resonators were fabricated and characterized, showing quality factors up to 50,000 at critical coupling and residual losses of 4 dB/cm at wavelengths away from the N-H bond absorption peak in SiN, demonstrating the high potential of these horizontal slot waveguides for use in active integrated photonics.

2.
Opt Express ; 29(5): 7321-7326, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33726235

ABSTRACT

Rare earth emitters are promising in integrated optics but require complex integration on silicon. In this work, we have fabricated an Y2O3:Eu3+ micro-emitter on SiO2 on Si substrate without etching. Since pulsed laser deposition produces a high quality layer at room temperature, material can be locally deposited on top of substrates by lift-off processing. After annealing, microstructures exhibit good crystallographic quality with controlled dimensions for light confinement and narrow emission. This works allows envisioning rare-earth doped micro-photonic structures directly integrated on silicon without etching, which opens the way to integration of new functional materials on silicon platform.

3.
Opt Express ; 25(20): 23677-23683, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-29041319

ABSTRACT

An integrated 8 x 8 wavelength router based on the micro-ring resonators using 2 x 2 multi-interference (MMI) crossing is demonstrated on silicon-on-insulator (SOI) technology, which is manufactured with microelectronics equipment. Experimental results show a free spectral range (FSR) about ~37 nm, an on/off contrast larger than 20 dB, an imbalance among the channels less than 2 dB, a crosstalk of channels smaller than -10 dB, a spacing between close channels about 3.6 ± 0.7 nm and an output efficiency of every channel smaller than 20 dB.

4.
Opt Express ; 24(6): A650-66, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-27136883

ABSTRACT

The role of pseudo-disordered photonic crystals on the absorption efficiency of simplified thin film crystalline silicon solar cells is presented and discussed. The expected short circuit current can thus be further increased compared to a fully optimized square lattice of holes, thanks to carefully controlled positions of the nanoholes in the considered realistic simplified solar cell stack. In addition, the pseudo-disordered structures are less sensitive to the angle of incidence, especially in the long wavelength range.

5.
Opt Express ; 24(2): 1133-42, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26832497

ABSTRACT

Pseudo-disordered structures enable additional design freedom for photon management. However, the optimization and interpretation is challenging when the large number of degrees of freedom encounters computationally intensive electromagnetic simulation method. Here we propose a novel one-dimensional multi-periodic pattern generation method to help us squeeze the disorder design space before performing rigorous calculation, by making use of the periodic attribute of the pattern. Consequently, thanks to the pre-filtered design space, it typically relieves us from computational burden and enables us to 'globally' optimize and study pseudo-disordered patterns. As an example, we show how this approach can be used to comprehensively optimize and systematically analyze generated disorder for broadband light trapping in thin film.

6.
Opt Express ; 23(24): 31085-97, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26698737

ABSTRACT

In this paper, we present a simple approach to study the coupling mechanisms between a plasmonic system consisting of bowtie nanoantennas and a photonic structure based on a Fabry-Perot interferometer. The nanoantenna array is represented by an equivalent homogeneous layer placed at the interferometer surface and yielding the effective dielectric function of the NA resonance. A phase matching model based on thin film interference is developed to describe the multi-layer interferences in the device and to analyze the fringe variations induced by the introduction of the plasmonic layer. The general model is validated by an experimental system consisting of a bowtie nanoantenna array and a porous-silicon-based interferometer. The optical response of this hybrid device exhibits both the enhancement induced by the nanoantenna resonance and the fringe pattern of the interferometer. Using the phase matching model, we demonstrate that strong coupling can occur in such a system, leading to fringe splitting. A study of the splitting strength and of the coupling behavior is given. The model study performed in this work enables to gain deeper understanding of the optical behavior of plasmonic/photonic hybrid devices.

7.
Opt Express ; 23(2): 1699-714, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25835926

ABSTRACT

We present a numerical method to accurately model the electro-optic interaction in anisotropic materials. Specifically, we combine a full-vectorial finite-difference optical mode solver with a radio-frequency solver to analyze the overlap between optical modes and applied electric field. This technique enables a comprehensive understanding on how electro-optic effects modify individual elements in the permittivity tensor of a material. We demonstrate the interest of this approach by designing a modulator that leverages the Pockels effect in a hybrid silicon-BaTiO3 slot waveguide. Optimized optical confinement in the active BaTiO3 layer as well as design of travelling-wave index-matched electrodes is presented. Most importantly, we show that the overall electro-optic modulation is largely governed by off-diagonal elements in the permittivity tensor. As most of active electro-optic materials are anisotropic, this method paves the way to better understand the physics of electro-optic effects and to improve optical modulators.

8.
Appl Opt ; 44(13): 2558-63, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15881064

ABSTRACT

We report the scanning near-field optical microscopy (SNOM) characterization of a 4 x 4 multimode interference (MMI) device working at a wavelength of 1.55 microm and designed for astronomical signal recombination. A comprehensive analysis of the mapped propagating field is presented. We compare SNOM measurements with beam-propagation-method simulations and thus are able to determine the MMI structure's refractive-index contrast and show that the measured value is higher than the expected value. Further investigation allows us to demonstrate that good care must be taken with the refractive-index profile used in simulation when one deals with low-index contrast structures. We show evidence that a step-index contrast is not suitable for adequate simulation of our structure and present a model that permits good agreement between measured and simulated propagating fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...