Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 136(7)2023 04 01.
Article in English | MEDLINE | ID: mdl-36727482

ABSTRACT

The epidermal growth factor receptor (EGFR) controls many cellular functions. Upon binding its ligand, the receptor undergoes dimerization, phosphorylation and activation of signals including the phosphoinositide-3-kinase (PI3K)-Akt pathway. Although some studies have indicated that EGFR signaling may be controlled by signal enrichment within various membrane rafts, such as flotillin nanodomains, others have found a limited effect of disruption of these nanodomains on EGFR signaling, suggesting that specific factors may define context-specific control of EGFR signaling. Ligand-bound EGFR can homodimerize or instead undergo heterodimerization with the related receptor HER2 (also known as ERBB2) when the latter is expressed. We examined how EGFR signaling in the presence of HER2 distinctly requires flotillin nanodomains. Induction of HER2 expression altered EGFR signaling duration, which is consistent with EGFR-HER2 heterodimer formation. EGFR and c-Src (also known as SRC) localized within plasma membrane structures demarked by flotillin-1 more prominently in HER2-expressing cells. Consistently, HER2-expressing cells, but not cells lacking HER2, were dependent on flotillin-1 and c-Src for EGFR signaling leading to Akt activation and cell proliferation. Hence, HER2 expression establishes a requirement for flotillin membrane rafts and c-Src in EGFR signaling.


Subject(s)
Proto-Oncogene Proteins c-akt , Signal Transduction , Ligands , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-2/metabolism
2.
Biochim Biophys Acta Mol Cell Res ; 1869(12): 119359, 2022 12.
Article in English | MEDLINE | ID: mdl-36089077

ABSTRACT

The epidermal growth factor receptor (EGFR) triggers the activation of many intracellular signals that control cell proliferation, growth, survival, migration, and differentiation. Given its wide expression, EGFR has many functions in development and tissue homeostasis. Some of the cellular outcomes of EGFR signaling involve alterations of specific aspects of cellular metabolism, and alterations of cell metabolism are emerging as driving influences in many physiological and pathophysiological contexts. Here we review the mechanisms by which EGFR regulates cell metabolism, including by modulation of gene expression and protein function leading to control of glucose uptake, glycolysis, biosynthetic pathways branching from glucose metabolism, amino acid metabolism, lipogenesis, and mitochondrial function. We further examine how this regulation of cell metabolism by EGFR may contribute to cell proliferation and differentiation and how EGFR-driven control of metabolism can impact certain diseases and therapy outcomes.


Subject(s)
ErbB Receptors , Signal Transduction , Amino Acids , Cell Proliferation , ErbB Receptors/genetics , ErbB Receptors/metabolism , Glucose/metabolism
3.
Sci Rep ; 9(1): 17768, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31780775

ABSTRACT

Cellular uptake is limiting for the efficacy of many cytotoxic drugs used to treat cancer. Identifying endocytic mechanisms that can be modulated with targeted, clinically-relevant interventions is important to enhance the efficacy of various cancer drugs. We identify that flotillin-dependent endocytosis can be targeted and upregulated by ultrasound and microbubble (USMB) treatments to enhance uptake and efficacy of cancer drugs such as cisplatin. USMB involves targeted ultrasound following administration of encapsulated microbubbles, used clinically for enhanced ultrasound image contrast. USMB treatments robustly enhanced internalization of the molecular scaffold protein flotillin, as well as flotillin-dependent fluid-phase internalization, a phenomenon dependent on the protein palmitoyltransferase DHHC5 and the Src-family kinase Fyn. USMB treatment enhanced DNA damage and cell killing elicited by the cytotoxic agent cisplatin in a flotillin-dependent manner. Thus, flotillin-dependent endocytosis can be modulated by clinically-relevant USMB treatments to enhance drug uptake and efficacy, revealing an important new strategy for targeted drug delivery for cancer treatment.


Subject(s)
Antineoplastic Agents/administration & dosage , Cisplatin/administration & dosage , Drug Delivery Systems/methods , Endocytosis , Membrane Proteins/metabolism , Microbubbles , Antineoplastic Agents/pharmacokinetics , Cell Line , Cell Line, Tumor , Cisplatin/pharmacokinetics , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Ultrasonic Waves
SELECTION OF CITATIONS
SEARCH DETAIL
...