Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Autism ; 11(1): 65, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32807217

ABSTRACT

BACKGROUND: Partial or an entire deletion of SHANK3 are considered as major drivers in the Phelan-McDermid syndrome, in which 75% of patients are diagnosed with autism spectrum disorder (ASD). During the recent years, there was an increasing interest in stem cell therapy in ASD, and specifically, mesenchymal stem cells (MSC). Moreover, it has been suggested that the therapeutic effect of the MSC is mediated mainly via the secretion of small extracellular vesicle that contains important molecular information of the cell and are used for cell-to-cell communication. Within the fraction of the extracellular vesicles, exosomes were highlighted as the most effective ones to convey the therapeutic effect. METHODS: Exosomes derived from MSC (MSC-exo) were purified, characterized, and given via intranasal administration to Shank3B KO mice (in the concentration of 107 particles/ml). Three weeks post treatment, the mice were tested for behavioral scoring, and their results were compared with saline-treated control and their wild-type littermates. RESULTS: Intranasal treatment with MSC-exo improves the social behavior deficit in multiple paradigms, increases vocalization, and reduces repetitive behaviors. We also observed an increase of GABARB1 in the prefrontal cortex. CONCLUSIONS: Herein, we hypothesized that MSC-exo would have a direct beneficial effect on the behavioral autistic-like phenotype of the genetically modified Shank3B KO mouse model of autism. Taken together, our data indicate that intranasal treatment with MSC-exo improves the core ASD-like deficits of this mouse model of autism and therefore has the potential to treat ASD patients carrying the Shank3 mutation.


Subject(s)
Autistic Disorder/genetics , Autistic Disorder/therapy , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Microfilament Proteins/genetics , Nerve Tissue Proteins/genetics , Administration, Intranasal , Animals , Behavior, Animal , Blood-Brain Barrier/pathology , Brain/pathology , Disease Models, Animal , Male , Mice, Knockout , Phenotype , Social Behavior , gamma-Aminobutyric Acid/metabolism
2.
Transl Psychiatry ; 4: e433, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25180572

ABSTRACT

Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions characterized by dysfunction in social interaction, communication and stereotypic behavior. Genetic and environmental factors have been implicated in the development of ASD, but the molecular mechanisms underlying their interaction are not clear. Epigenetic modifications have been suggested as molecular mechanism that can mediate the interaction between the environment and the genome to produce adaptive or maladaptive behaviors. Here, using the Illumina 450 K methylation array we have determined the existence of many dysregulated CpGs in two cortical regions, Brodmann area 10 (BA10) and Brodmann area 24 (BA24), of individuals who had ASD. In BA10 we found a very significant enrichment for genomic areas responsible for immune functions among the hypomethylated CpGs, whereas genes related to synaptic membrane were enriched among hypermethylated CpGs. By comparing our methylome data with previously published transcriptome data, and by performing real-time PCR on selected genes that were dysregulated in our study, we show that hypomethylated genes are often overexpressed, and that there is an inverse correlation between gene expression and DNA methylation within the individuals. Among these genes there were C1Q, C3, ITGB2 (C3R), TNF-α, IRF8 and SPI1, which have recently been implicated in synaptic pruning and microglial cell specification. Finally, we determined the epigenetic dysregulation of the gene HDAC4, and we confirm that the locus encompassing C11orf21/TSPAN32 has multiple hypomethylated CpGs in the autistic brain, as previously demonstrated. Our data suggest a possible role for epigenetic processes in the etiology of ASD.


Subject(s)
Brain/pathology , Child Development Disorders, Pervasive/genetics , Child Development Disorders, Pervasive/pathology , DNA Methylation/genetics , Gene Expression Regulation/physiology , Neural Pathways/pathology , Child Development Disorders, Pervasive/diagnosis , Child Development Disorders, Pervasive/psychology , CpG Islands , Gene Expression Profiling , Gyrus Cinguli/pathology , Humans , Oligonucleotide Array Sequence Analysis , Prefrontal Cortex/pathology , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...