Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
PeerJ ; 12: e17336, 2024.
Article in English | MEDLINE | ID: mdl-38784397

ABSTRACT

Background: Urinary tract infections (UTIs) are very common worldwide. According to their symptomatology, these infections are classified as pyelonephritis, cystitis, or asymptomatic bacteriuria (AB). Approximately 75-95% of UTIs are caused by uropathogenic Escherichia coli (UPEC), which is an extraintestinal bacterium that possesses virulence factors for bacterial adherence and invasion in the urinary tract. In addition, UPEC possesses type 6 secretion systems (T6SS) as virulence mechanisms that can participate in bacterial competition and in bacterial pathogenicity. UPEC UMN026 carries three genes, namely, ECUMN_0231, ECUMN_0232, and ECUMN_0233, which encode three uncharacterized proteins related to the T6SS that are conserved in strains from phylogroups B2 and D and have been proposed as biomarkers of UTIs. Aim: To analyze the frequency of the ECUMN_0231, ECUMN_0232, ECUMN_0233, and vgrG genes in UTI isolates, as well as their expression in Luria Bertani (LB) medium and urine; to determine whether these genes are related to UTI symptoms or bacterial competence and to identify functional domains on the putative proteins. Methods: The frequency of the ECUMN and vgrG genes in 99 clinical isolates from UPEC was determined by endpoint PCR. The relationship between gene presence and UTI symptomatology was determined using the chi2 test, with p < 0.05 considered to indicate statistical significance. The expression of the three ECUMN genes and vgrG was analyzed by RT-PCR. The antibacterial activity of strain UMN026 was determined by bacterial competence assays. The identification of functional domains and the docking were performed using bioinformatic tools. Results: The ECUMN genes are conserved in 33.3% of clinical isolates from patients with symptomatic and asymptomatic UTIs and have no relationship with UTI symptomatology. Of the ECUMN+ isolates, only five (15.15%, 5/33) had the three ECUMN and vgrG genes. These genes were expressed in LB broth and urine in UPEC UMN026 but not in all the clinical isolates. Strain UMN026 had antibacterial activity against UPEC clinical isolate 4014 (ECUMN-) and E. faecalis but not against isolate 4012 (ECUMN+). Bioinformatics analysis suggested that the ECUMN genes encode a chaperone/effector/immunity system. Conclusions: The ECUMN genes are conserved in clinical isolates from symptomatic and asymptomatic patients and are not related to UTI symptoms. However, these genes encode a putative chaperone/effector/immunity system that seems to be involved in the antibacterial activity of strain UMN026.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Molecular Chaperones , Urinary Tract Infections , Uropathogenic Escherichia coli , Uropathogenic Escherichia coli/immunology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/pathogenicity , Humans , Urinary Tract Infections/microbiology , Urinary Tract Infections/immunology , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/immunology , Escherichia coli Proteins/metabolism , Female , Virulence Factors/genetics , Virulence Factors/immunology , Male , Middle Aged , Adult
2.
Front Vet Sci ; 5: 184, 2018.
Article in English | MEDLINE | ID: mdl-30155471

ABSTRACT

Actinobacillus pleuropneumoniae, the etiological agent of porcine pleuropneumonia, represents one of the most important health problems in the swine industry worldwide and it is included in the porcine respiratory disease complex. One of the bacterial survival strategies is biofilm formation, which are bacterial communities embedded in an extracellular matrix that could be attached to a living or an inert surface. Until recently, A. pleuropneumoniae was considered to be an obligate pathogen. However, recent studies have shown that A. pleuropneumoniae is present in farm drinking water. In this study, the drinking water microbial communities of Aguascalientes (Mexico) swine farms were analyzed, where the most frequent isolated bacterium was Escherichia coli. Biofilm formation was tested in vitro; producing E. coli biofilms under optimal growth conditions; subsequently, A. pleuropneumoniae serotype 1 (strains 4074 and 719) was incorporated to these biofilms. Interaction between both bacteria was evidenced, producing an increase in biofilm formation. Extracellular matrix composition of two-species biofilms was also characterized using fluorescent markers and enzyme treatments. In conclusion, results confirm that A. pleuropneumoniae is capable of integrates into biofilms formed by environmental bacteria, indicative of a possible survival strategy in the environment and a mechanism for disease dispersion.

3.
Rev. argent. microbiol ; 49(1): 15-23, mar. 2017. ilus, graf, tab
Article in English | LILACS | ID: biblio-843179

ABSTRACT

Coagulase-positive staphylococci (CoPS) are opportunistic pathogens carrying various mechanisms of resistance that have a large number of virulence factors, and whose ability to induce illness is associated with the host. This study aimed to investigate the presence of environmental coagulase-positive staphylococci, their susceptibility profile, clonal relationship and ability to form biofilm. The 16S rRNA genes from CoPS isolates were analyzed, and their antibiotic susceptibility was evaluated using the agar dilution method in accordance with Clinical and Laboratory Standards Institute guidelines. The clonal profile was obtained by pulsed-field gel electrophoresis (PFGE) and biofilm formation was measured by a crystal violet retention assay. A total of 72 Staphylococcus spp. strains were isolated from air, metal surfaces, and nostrils from humans, dogs, cats, and birds. Three species were identified: Staphylococcus aureus (17%), Staphylococcus intermedius (63%), and Staphylococcus pseudintermedius (21%). Ninety three percent (93%) of the strains were resistant to at least one of 13 tested antibiotics. S. pseudintermedius strains were the only resistant ones to methicillin while most of these isolates were multidrug-resistant, had significantly higher ability to form biofilm and PFGE grouped into seven different patterns, without showing clonal dispersion among animals and environmental isolates. This study suggests that dogs, cat, and air are environmental sources potentially carrying multidrug-resistant S. pseudintermedius, which survives in different environments through biofilm formation and multidrug resistance, characteristics that can be transmitted horizontally to other bacteria and exacerbate the problem of antibiotic resistance in humans.


Los estafilococos coagulasa-positiva (CoPS) son patógenos oportunistas, portan varios mecanismos de resistencia, tienen un gran número de factores de virulencia y su capacidad para inducir la enfermedad está asociada con el hospedero. El objetivo de este estudio fue investigar la presencia de CoPS en el medio ambiente, su perfil de sensibilidad a los antibióticos, su relación clonal y su capacidad para formar biopelícula. De los aislamientos de CoPS se analizaron los genes 16S ARNr y se evaluó la sensibilidad a los antibióticos mediante el método de dilución en agar según el CLSI. El perfil clonal se obtuvo por electroforesis en gel de campo pulsado (PFGE) y la formación de biopelícula se analizó por retención de cristal violeta. Se aislaron 72 cepas de Staphylococcus spp. a partir de aire, superficies metálicas y narinas de humanos, perros, gatos y aves. Se identificaron tres especies: Staphylococcus aureus (17%), Staphylococcus intermedius (62%) y Staphylococcus pseudintermedius (21%). El 93% de las cepas fueron resistentes al menos a uno de 13 antibióticos probados. Los aislamientos de S. pseudintermedius fueron los únicos resistentes a meticilina y la mayoría fueron resistentes a múltiples fármcos, tuvieron una capacidad significativamente mayor para producir biopelícula y la PFGE los agrupó en 7 diferentes patrones, sin mostrar dispersión clonal entre los aislamientos de animales y de medio ambiente. Este estudio sugiere que los perros, los gatos y el aire son fuentes ambientales potencialmente portadoras de S. pseudintermedius resistente a múltiples antibióticos. Este agente sobrevive en diferentes entornos en virtud de la formación de biopelículas y la resistencia a múltiples antibióticos, características que pueden transmitirse horizontalmente a otras bacterias y, por ende, exacerbar el problema de la resistencia a los antibióticos en humanos.


Subject(s)
Staphylococcus/isolation & purification , Staphylococcus/drug effects , Staphylococcus/pathogenicity , Drug Resistance, Microbial/drug effects , Drug Resistance, Multiple/drug effects , Biofilms/growth & development , Environment , Electrophoresis, Gel, Pulsed-Field/methods , Drug Resistance, Bacterial/drug effects
4.
Rev Argent Microbiol ; 49(1): 15-23, 2017.
Article in English | MEDLINE | ID: mdl-28017482

ABSTRACT

Coagulase-positive staphylococci (CoPS) are opportunistic pathogens carrying various mechanisms of resistance that have a large number of virulence factors, and whose ability to induce illness is associated with the host. This study aimed to investigate the presence of environmental coagulase-positive staphylococci, their susceptibility profile, clonal relationship and ability to form biofilm. The 16S rRNA genes from CoPS isolates were analyzed, and their antibiotic susceptibility was evaluated using the agar dilution method in accordance with Clinical and Laboratory Standards Institute guidelines. The clonal profile was obtained by pulsed-field gel electrophoresis (PFGE) and biofilm formation was measured by a crystal violet retention assay. A total of 72 Staphylococcus spp. strains were isolated from air, metal surfaces, and nostrils from humans, dogs, cats, and birds. Three species were identified: Staphylococcus aureus (17%), Staphylococcus intermedius (63%), and Staphylococcus pseudintermedius (21%). Ninety three percent (93%) of the strains were resistant to at least one of 13 tested antibiotics. S. pseudintermedius strains were the only resistant ones to methicillin while most of these isolates were multidrug-resistant, had significantly higher ability to form biofilm and PFGE grouped into seven different patterns, without showing clonal dispersion among animals and environmental isolates. This study suggests that dogs, cat, and air are environmental sources potentially carrying multidrug-resistant S. pseudintermedius, which survives in different environments through biofilm formation and multidrug resistance, characteristics that can be transmitted horizontally to other bacteria and exacerbate the problem of antibiotic resistance in humans.


Subject(s)
Biofilms , Coagulase , R Factors , Staphylococcus , Animals , Anti-Bacterial Agents , Cats , Humans , Microbial Sensitivity Tests , RNA, Ribosomal, 16S , Staphylococcal Infections , Staphylococcus/isolation & purification
5.
Microbiology (Reading) ; 161(Pt 4): 903-13, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25667010

ABSTRACT

RcsC is a hybrid histidine kinase that forms part of a phospho-relay signal transduction pathway with RcsD and RcsB. Besides the typical domains of a sensor kinase, i.e. the periplasmic (P), linker (L), dimerization and H-containing (A), and ATP-binding (B) domains, RcsC possesses a receiver domain (D) at the carboxy-terminal domain. To study the role played by each of the RcsC domains, four plasmids containing several of these domains were constructed (PLAB, LAB, AB and ABD) and transformed into Escherichia coli K-12 strain BW25113. Different amounts of biofilm were produced, depending on the RcsC domains expressed: the plasmid expressing the ABD subdomains produced the highest amount of biofilm. This phenotype was also observed when the plasmids were transformed in a ΔrcsCDB strain. Biofilm formation was abolished in the pgaABCD and nhaR backgrounds. The results indicate the existence of a novel signalling pathway that depends on RcsC, yet independent of RcsD and RcsB, that activates the pgaABCD operon and, as a consequence, biofilm formation. This signalling pathway involves the secondary metabolite acetyl phosphate and the response regulator OmpR.


Subject(s)
Acetylglucosamine/biosynthesis , Biofilms , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Gene Deletion , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Signal Transduction , Enzyme Activation , Escherichia coli Proteins/chemistry , Multienzyme Complexes/chemistry , Operon , Phosphoprotein Phosphatases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Interaction Domains and Motifs , Protein Kinases/chemistry , Recombinant Fusion Proteins
6.
J Bacteriol ; 196(12): 2143-54, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24659766

ABSTRACT

LeuO is a LysR-type transcriptional regulator (LTTR) that has been described to be a global regulator in Escherichia coli and Salmonella enterica, since it positively and negatively regulates the expression of genes involved in multiple biological processes. LeuO is comprised of an N-terminal DNA-binding domain (DBD) with a winged helix-turn-helix (wHTH) motif and of a long linker helix (LH) involved in dimerization that connects the DBD with the C-terminal effector-binding domain (EBD) or regulatory domain (RD; which comprises subdomains RD-I and RD-II). Here we show that the oligomeric structure of LeuO is a tetramer that binds with high affinity to DNA. A collection of single amino acid substitutions in the LeuO DBD indicated that this region is involved in oligomerization, in positive and negative regulation, as well as in DNA binding. Mutants with point mutations in the central and C-terminal regions of RD-I were affected in transcriptional activation. Deletion of the RD-II and RD-I C-terminal subdomains affected not only oligomerization but also DNA interaction, showing that they are involved in positive and negative regulation. Together, these data demonstrate that not only the C terminus but also the DBD of LeuO is involved in oligomer formation; therefore, each LeuO domain appears to act synergistically to maintain its regulatory functions in Salmonella enterica serovar Typhi.


Subject(s)
Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , Gene Expression Regulation, Bacterial/physiology , Salmonella typhi/metabolism , Transcription, Genetic , Amino Acid Sequence , Bacterial Proteins/genetics , Gene Deletion , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Binding , Protein Conformation , Salmonella typhi/genetics
7.
J Ind Microbiol Biotechnol ; 39(8): 1141-52, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22638789

ABSTRACT

We used the autodisplay system AIDA-I, which belongs to the type V secretion system (TVSS), to display the ß-glucosidase BglC from Thermobifida fusca on the outer membrane of the ethanologenic Escherichia coli strain MS04 (MG1655 ∆pflB, ∆adhE, ∆frdA, ∆xylFGH, ∆ldhA, PpflB::pdc (Zm)-adhB (Zm)). MS04 that was transformed with the plasmid pAIDABglCRHis showed cellobiase activity (171 U/g(CDW)) and fermented 40 g/l cellobiose in mineral medium in 60 h with an ethanol yield of 81 % of the theoretical maximum. Whole-cell protease treatment, SDS-PAGE, and Western-blot analysis demonstrated that BglC was attached to the external surface of the outer membrane of MS04. When attached to the cells, BglC showed 93.3 % relative activity in the presence of 40 g/l ethanol and retained 100 % of its activity following 2 days of incubation at 37 °C with the same ethanol concentration. This study shows the potential of the TVSS (AIDA-I) and BglC as tools for the production of lignocellulosic bio-commodities.


Subject(s)
Bacterial Secretion Systems , Cellobiose/metabolism , Escherichia coli/metabolism , Ethanol/metabolism , Fermentation , beta-Glucosidase/metabolism , Actinomycetales/enzymology , Actinomycetales/genetics , Cellulases/metabolism , Electrophoresis, Polyacrylamide Gel , Escherichia coli/cytology , Escherichia coli/genetics , beta-Glucosidase/genetics
8.
Methods Enzymol ; 471: 77-87, 2010.
Article in English | MEDLINE | ID: mdl-20946843

ABSTRACT

Bacteria use two-component signal transduction systems to detect and respond to environmental changes. These systems have been studied systematically in Escherichia coli as a model organism. Most of the signal transduction systems present in E. coli are conserved in related pathogenic bacteria; however, differences in regulation by these systems have been reported from one bacterial species to another [Oropeza, R., and Calva, E. (2009). The cysteine 354 and 277 residues of Salmonella enterica serovar Typhi EnvZ are determinants of autophosphorylation and OmpR phosphorylation. FEMS Microbiol. Lett.292, 282-290]. Our laboratory has been interested in studying the OmpR/EnvZ two-component system in S. enterica. In S. enterica serovar Typhi (Typhi), it regulates the expression of the porin genes, namely ompC, ompF, ompS1, and ompS2. OmpR proteins are identical between E. coli and Typhi, but several differences exist between the EnvZ proteins. To define whether some differences in porin regulation are due to changes on EnvZ, we decided to overexpress and purify E. coli, Typhi, and S. enterica serovar Typhimurium (Typhimurium) EnvZ proteins fused to the maltose-binding protein (MBP) as a purification tag. Differences in the autophosphorylation level of these proteins were evidenced. Hence, considering the differences at the amino acid level between E. coli and Typhi EnvZ proteins, several mutations were introduced in the Typhi EnvZ protein in order to try to find the amino acids affecting the enzymatic activity of the protein. We found that Cys354 plays an important role in defining the enzymatic activity of this histidine kinase. Here, we report the automated purification of a collection of MBP-EnvZ fusions using a mini-chromatography commercial system, but adapting an amylose affinity column packed by ourselves.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Maltose-Binding Proteins/metabolism , Recombinant Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Escherichia coli/metabolism , Maltose-Binding Proteins/genetics , Phosphorylation , Recombinant Proteins/genetics , Salmonella typhi/genetics , Salmonella typhi/metabolism
9.
Microbiology (Reading) ; 155(Pt 7): 2127-2136, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19406898

ABSTRACT

The DNA static curvature has been described to play a key role as a regulatory element in the transcription process of several bacterial genes. Here, the role of DNA curvature in the expression of the ompS1 porin gene in Salmonella enterica serovar Typhi is described. The web server mutacurve was used to predict mutations that diminished or restored the extent of DNA curvature in the 5' regulatory region of ompS1. Using these predictions, curvature was diminished by site-directed mutagenesis of only two residues, and curvature was restored by further mutagenesis of the same two residues. Lowering the extent of DNA curvature resulted in an increase in ompS1 expression and in the diminution of the affinity of the silencer proteins H-NS and StpA for the ompS1 5' regulatory region. These mutations were in a region shown not to contain the H-NS nucleation site, consistent with the notion that the effect on expression was due to changes in DNA structural topology.


Subject(s)
DNA, Bacterial/physiology , Porins/biosynthesis , Salmonella typhi , Bacterial Outer Membrane Proteins/biosynthesis , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Body Temperature Regulation , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Bacterial , Molecular Sequence Data , Mutagenesis, Site-Directed , Porins/genetics , Regulatory Sequences, Nucleic Acid , Salmonella typhi/genetics , Salmonella typhi/metabolism , Software , Transcription, Genetic , Water-Electrolyte Balance
10.
FEMS Microbiol Lett ; 292(2): 282-90, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19187206

ABSTRACT

An initial biochemical characterization of the Salmonella enterica serovar Typhi (S. Typhi) EnvZ sensor protein and several mutant derivatives was performed. Autophosphorylation levels were higher for Escherichia coli EnvZ, intermediate for S. enterica serovar Typhimurium EnvZ and very low for S. Typhi EnvZ, in spite of their high amino acid sequence identity. Consequently, OmpR phosphorylation was related to EnvZ autophosphorylation. Among the mutant derivatives, a C354G mutation in S. Typhi EnvZ resulted in a substantial increase in autophosphorylation, while mutation of its other cysteine residue at position 277 to L or S decreased the EnvZ autophosphorylation level. Upon heterodimerization, the S. Typhi C354G mutant complemented the wild type in vitro, increasing the EnvZ-P yield of both monomers, in accordance with the model where EnvZ autophosphorylation occurs in trans, indicating that dimer formation is a dynamic process. Hence, the C354 and the C277 residues are fundamental in determining the particular intrinsic biochemical characteristics of EnvZ.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Phosphoproteins/metabolism , Protein Kinases/metabolism , Salmonella typhi/metabolism , Transcription Factors/metabolism , Amino Acid Substitution/genetics , Bacterial Outer Membrane Proteins/genetics , Dimerization , Escherichia coli/enzymology , Genetic Complementation Test , Histidine Kinase , Mutagenesis, Site-Directed , Mutation, Missense , Phosphoproteins/genetics , Phosphorylation , Protein Kinases/genetics , Salmonella typhi/genetics , Salmonella typhimurium/enzymology , Transcription Factors/genetics
11.
Mol Microbiol ; 54(3): 823-35, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15491370

ABSTRACT

OmpR activates expression of the two-component regulatory system located on Salmonella pathogenicity island 2 (SPI-2) that controls the expression of a type III secretion system, as well as many other genes required for systemic infection in mice. Measurements of SsrA and SsrB protein levels under different growth conditions indicate that expression of these two components is uncoupled, i.e. SsrB is produced in the absence of ssrA and vice versa. This result was suggested from our previous studies, in which two promoters at ssrA/B were identified. The isolated C-terminus of SsrB binds to DNA and protects regions upstream of ssrA, ssrB and srfH from DNase I digestion. Furthermore, the C-terminus of SsrB alone is capable of activating transcription in the absence of the N-terminus. Results from beta-galactosidase assays indicate that the N-terminal phosphorylation domain inhibits the C-terminal effector domain. A previous study from our laboratory reported that ssrA-lacZ and ssrB-lacZ transcriptional fusions were substantially reduced in an ssrB null strain. Results from DNase I protection assays provide direct evidence that SsrB binds at ssrA and ssrB, although the binding sites lie within the transcribed regions. Additional regulators clearly affect gene expression at this important locus, and here we provide evidence that SlyA, a transcription factor that contributes to Salmonella virulence, also affects ssrA/B gene expression.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Genomic Islands , Salmonella typhimurium , Trans-Activators/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Animals , Bacterial Proteins/genetics , Binding Sites , DNA Footprinting , Deoxyribonuclease I/metabolism , Membrane Proteins/metabolism , Mice , Phosphorylation , Protein Binding , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Salmonella typhimurium/pathogenicity
12.
Mol Microbiol ; 48(4): 1131-43, 2003 May.
Article in English | MEDLINE | ID: mdl-12753201

ABSTRACT

Expression of genes located on Salmonella pathogenicity island 2 (SPI-2) is required for systemic infection in mice. This region encodes a type III secretion system, secreted effectors and the two-component regulatory system SsrA/B (also referred to as SpiR), as well as additional uncharacterized genes. In the present work, we demonstrate that phospho-OmpR (OmpR-P) functions as an activator at the spiC-ssrA/B locus. There are two promoters at spiR; one is upstream of ssrA and the other upstream of ssrB. Our results indicate that, in contrast to many two-component regulatory systems, regulation of the sensor kinase SsrA appears to be uncoupled and distinct from regulation of the response regulator SsrB. OmpR regulation of ssrA/B is one of only a few examples known in which a two-component response regulator directly regulates the expression of another two-component regulatory system.


Subject(s)
Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Salmonella typhimurium/genetics , Trans-Activators/physiology , Transcription Factors/genetics , DNA-Binding Proteins , Porins/physiology , Salmonella typhimurium/growth & development , Salmonella typhimurium/pathogenicity , Transcription, Genetic
13.
J Biol Chem ; 277(36): 32714-21, 2002 Sep 06.
Article in English | MEDLINE | ID: mdl-12077136

ABSTRACT

OmpR is the response regulator of a two-component regulatory system that controls the expression of the porin genes ompF and ompC in Escherichia coli. This regulator consists of two domains joined by a flexible linker region. The amino-terminal domain is phosphorylated by the sensor kinase EnvZ, and the carboxyl-terminal domain binds DNA via a winged helix-turn-helix motif. In vitro studies have shown that amino-terminal phosphorylation enhances the DNA binding affinity of OmpR and, conversely, that DNA binding by the carboxyl terminus increases OmpR phosphorylation. In the present work, we demonstrate that the linker region contributes to this communication between the two domains of OmpR. Changing the specific amino acid composition of the linker alters OmpR function, as does increasing or decreasing its length. Three linker mutants give rise to an OmpF(+) OmpC(-) phenotype, but the defects are not due to a shared molecular mechanism. Currently, functional homology between response regulators is predicted based on similarities in the amino and carboxyl-terminal domains. The results presented here indicate that linker length and composition should also be considered. Furthermore, classification of response regulators in the same subfamily does not necessarily imply that they share a common response mechanism.


Subject(s)
Bacterial Proteins , Escherichia coli Proteins , Trans-Activators/physiology , Adenosine Triphosphatases/metabolism , Bacterial Outer Membrane Proteins/metabolism , DNA , Deoxyribonuclease I/metabolism , Deoxyribonucleases/metabolism , Escherichia coli/metabolism , Models, Genetic , Multienzyme Complexes/metabolism , Mutation , Phenotype , Phosphorylation , Protein Conformation , Protein Structure, Tertiary , Time Factors , Trans-Activators/chemistry , Transcriptional Activation , beta-Galactosidase/metabolism
14.
J Mol Biol ; 315(4): 497-511, 2002 Jan 25.
Article in English | MEDLINE | ID: mdl-11812125

ABSTRACT

In Escherichia coli, the two-component regulatory system that controls the expression of outer membrane porins in response to environmental osmolarity consists of the sensor kinase EnvZ and the response regulator OmpR. Phosphorylated OmpR activates expression of the OmpF porin at low osmolarity, and at high osmolarity represses ompF transcription and activates expression of OmpC. We have characterized a substitution in the amino-terminal phosphorylation domain of OmpR, T83I, its phenotype is OmpF(-) OmpC(-). The mutant protein is not phosphorylated by small molecule phosphodonors such as acetyl phosphate and phosphoramidate, but it is phosphorylated by the cognate kinase EnvZ. Interestingly, the active site T83I substitution alters the DNA binding properties of the carboxyl-terminal effector domain. DNase I protection assays indicate that DNA binding by the mutant protein is similar to wild-type OmpR at the ompF promoter, but at ompC, the pattern of protection is different from OmpR. Our results indicate that all three of the OmpR binding sites at the ompC promoter must be filled in order to activate gene expression. Furthermore, it appears that OmpR-phosphate must adopt different conformations when bound at ompF and ompC. A model is presented to account for the reciprocal regulation of OmpF and OmpC porin expression.


Subject(s)
Bacterial Proteins , Escherichia coli , Mutation/genetics , Porins/genetics , Response Elements/genetics , Trans-Activators/chemistry , Trans-Activators/metabolism , Amides/metabolism , Amino Acid Substitution/genetics , Bacterial Outer Membrane Proteins/metabolism , Base Sequence , DNA Footprinting , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Genes, Dominant/genetics , Models, Genetic , Models, Molecular , Molecular Sequence Data , Multienzyme Complexes/metabolism , Organophosphates/metabolism , Phenotype , Phosphoric Acids/metabolism , Phosphorylation , Promoter Regions, Genetic/genetics , Protein Binding , Protein Kinases/metabolism , Protein Structure, Tertiary , Trans-Activators/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...