Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cereb Blood Flow Metab ; 36(6): 1111-21, 2016 06.
Article in English | MEDLINE | ID: mdl-26661185

ABSTRACT

[(11)C]GMOM (carbon-11 labeled N-(2-chloro-5-thiomethylphenyl)-N'-(3-[(11)C]methoxy-phenyl)-N'-methylguanidine) is a PET ligand that binds to the N-methyl-d-aspartate receptor with high specificity and affinity. The purpose of this first in human study was to evaluate kinetics of [(11)C]GMOM in the healthy human brain and to identify the optimal pharmacokinetic model for quantifying these kinetics, both before and after a pharmacological dose of S-ketamine. Dynamic 90 min [(11)C]GMOM PET scans were obtained from 10 subjects. In six of the 10 subjects, a second PET scan was performed following an S-ketamine challenge. Metabolite corrected plasma input functions were obtained for all scans. Regional time activity curves were fitted to various single- and two-tissue compartment models. Best fits were obtained using a two-tissue irreversible model with blood volume parameter. The highest net influx rate (Ki) of [(11)C]GMOM was observed in regions with high N-methyl-d-aspartate receptor density, such as hippocampus and thalamus. A significant reduction in the Ki was observed for the entire brain after administration of ketamine, suggesting specific binding to the N-methyl-d-aspartate receptors. This initial study suggests that the [(11)C]GMOM could be used for quantification of N-methyl-d-aspartate receptors.


Subject(s)
Brain/metabolism , Positron-Emission Tomography/methods , Receptors, N-Methyl-D-Aspartate/metabolism , Adult , Carbon Radioisotopes/pharmacokinetics , Female , Humans , Kinetics , Ligands , Male , Protein Binding , Radiopharmaceuticals/pharmacokinetics , Receptors, N-Methyl-D-Aspartate/analysis , Young Adult
2.
Nucl Med Biol ; 42(2): 205-12, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25451213

ABSTRACT

INTRODUCTION: The present study was designed to assess whether [(18)F]PK-209 (3-(2-chloro-5-(methylthio)phenyl)-1-(3-([(18)F]fluoromethoxy)phenyl)-1-methylguanidine) is a suitable ligand for imaging the ion-channel site of N-methyl-D-aspartate receptors (NMDArs) using positron emission tomography (PET). METHODS: Dynamic PET scans were acquired from male rhesus monkeys over 120min, at baseline and after the acute administration of dizocilpine (MK-801, 0.3mg/kg; n=3/condition). Continuous and discrete arterial blood samples were manually obtained, to generate metabolite-corrected input functions. Parametric volume-of-distribution (VT) images were obtained using Logan analysis. The selectivity profile of PK-209 was assessed in vitro, on a broad screen of 79 targets. RESULTS: PK-209 was at least 50-fold more selective for NMDArs over all other targets examined. At baseline, prolonged retention of radioactivity was observed in NMDAr-rich cortical regions relative to the cerebellum. Pretreatment with MK-801 reduced the VT of [(18)F]PK-209 compared with baseline in two of three subjects. The rate of radioligand metabolism was high, both at baseline and after MK-801 administration. CONCLUSIONS: PK-209 targets the intrachannel site with high selectivity. Imaging of the NMDAr is feasible with [(18)F]PK-209, despite its fast metabolism. Further in vivo evaluation in humans is warranted.


Subject(s)
Fluorine Radioisotopes , Guanidine , Guanidines , Positron-Emission Tomography/methods , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Brain/diagnostic imaging , Brain/drug effects , Brain/metabolism , Dizocilpine Maleate/pharmacology , Guanidine/metabolism , Guanidines/metabolism , Ligands , Macaca mulatta , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...