Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 11: 1169962, 2023.
Article in English | MEDLINE | ID: mdl-37384248

ABSTRACT

Aggregation of the Tar DNA-binding protein of 43 kDa (TDP-43) is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia and likely contributes to disease by loss of nuclear function. Analysis of TDP-43 function in knockout zebrafish identified an endothelial directional migration and hypersprouting phenotype during development prior lethality. In human umbilical vein cells (HUVEC) the loss of TDP-43 leads to hyperbranching. We identified elevated expression of FIBRONECTIN 1 (FN1), the VASCULAR CELL ADHESION MOLECULE 1 (VCAM1), as well as their receptor INTEGRIN α4ß1 (ITGA4B1) in HUVEC cells. Importantly, reducing the levels of ITGA4, FN1, and VCAM1 homologues in the TDP-43 loss-of-function zebrafish rescues the angiogenic defects indicating the conservation of human and zebrafish TDP-43 function during angiogenesis. Our study identifies a novel pathway regulated by TDP-43 important for angiogenesis during development.

2.
EMBO J ; 35(21): 2350-2370, 2016 11 02.
Article in English | MEDLINE | ID: mdl-27621269

ABSTRACT

Nuclear clearance of TDP-43 into cytoplasmic aggregates is a key driver of neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), but the mechanisms are unclear. Here, we show that TDP-43 knockdown specifically reduces the number and motility of RAB11-positive recycling endosomes in dendrites, while TDP-43 overexpression has the opposite effect. This is associated with delayed transferrin recycling in TDP-43-knockdown neurons and decreased ß2-transferrin levels in patient CSF Whole proteome quantification identified the upregulation of the ESCRT component VPS4B upon TDP-43 knockdown in neurons. Luciferase reporter assays and chromatin immunoprecipitation suggest that TDP-43 represses VPS4B transcription. Preventing VPS4B upregulation or expression of its functional antagonist ALIX restores trafficking of recycling endosomes. Proteomic analysis revealed the broad reduction in surface expression of key receptors upon TDP-43 knockdown, including ErbB4, the neuregulin 1 receptor. TDP-43 knockdown delays the surface delivery of ErbB4. ErbB4 overexpression, but not neuregulin 1 stimulation, prevents dendrite loss upon TDP-43 knockdown. Thus, impaired recycling of ErbB4 and other receptors to the cell surface may contribute to TDP-43-induced neurodegeneration by blocking trophic signaling.


Subject(s)
DNA-Binding Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomes/metabolism , Neurons/metabolism , Receptor, ErbB-4/metabolism , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cells, Cultured , DNA-Binding Proteins/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Gene Knockdown Techniques , Hippocampus/cytology , Humans , Protein Transport , Rats , Receptor, ErbB-4/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction
3.
EMBO Rep ; 17(9): 1314-25, 2016 09.
Article in English | MEDLINE | ID: mdl-27461252

ABSTRACT

Intronic hexanucleotide (G4C2) repeat expansions in C9orf72 are genetically associated with frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The repeat RNA accumulates within RNA foci but is also translated into disease characterizing dipeptide repeat proteins (DPR). Repeat-dependent toxicity may affect nuclear import. hnRNPA3 is a heterogeneous nuclear ribonucleoprotein, which specifically binds to the G4C2 repeat RNA We now report that a reduction of nuclear hnRNPA3 leads to an increase of the repeat RNA as well as DPR production and deposition in primary neurons and a novel tissue culture model that reproduces features of the C9orf72 pathology. In fibroblasts derived from patients carrying extended C9orf72 repeats, nuclear RNA foci accumulated upon reduction of hnRNPA3. Neurons in the hippocampus of C9orf72 patients are frequently devoid of hnRNPA3. Reduced nuclear hnRNPA3 in the hippocampus of patients with extended C9orf72 repeats correlates with increased DPR deposition. Thus, reduced hnRNPA3 expression in C9orf72 cases leads to increased levels of the repeat RNA as well as enhanced production and deposition of DPR proteins and RNA foci.


Subject(s)
Dipeptides/metabolism , Gene Expression Regulation , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Proteins/genetics , RNA, Messenger/genetics , Animals , Brain/metabolism , C9orf72 Protein , Fibroblasts , Gene Knockdown Techniques , HeLa Cells , Humans , Neurons/metabolism , Protein Binding , Protein Transport , Pyramidal Cells/metabolism , RNA Transport , RNA, Small Interfering/genetics , Rats
4.
EMBO J ; 33(5): 450-67, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24357581

ABSTRACT

TMEM106B is a major risk factor for frontotemporal lobar degeneration with TDP-43 pathology. TMEM106B localizes to lysosomes, but its function remains unclear. We show that TMEM106B knockdown in primary neurons affects lysosomal trafficking and blunts dendritic arborization. We identify microtubule-associated protein 6 (MAP6) as novel interacting protein for TMEM106B. MAP6 over-expression inhibits dendritic branching similar to TMEM106B knockdown. MAP6 knockdown fully rescues the dendritic phenotype of TMEM106B knockdown, supporting a functional interaction between TMEM106B and MAP6. Live imaging reveals that TMEM106B knockdown and MAP6 overexpression strongly increase retrograde transport of lysosomes in dendrites. Downregulation of MAP6 in TMEM106B knockdown neurons restores the balance of anterograde and retrograde lysosomal transport and thereby prevents loss of dendrites. To strengthen the link, we enhanced anterograde lysosomal transport by expressing dominant-negative Rab7-interacting lysosomal protein (RILP), which also rescues the dendrite loss in TMEM106B knockdown neurons. Thus, TMEM106B/MAP6 interaction is crucial for controlling dendritic trafficking of lysosomes, presumably by acting as a molecular brake for retrograde transport. Lysosomal misrouting may promote neurodegeneration in patients with TMEM106B risk variants.


Subject(s)
Dendrites/metabolism , Lysosomes/metabolism , Membrane Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/metabolism , Animals , Cell Line , Gene Expression , Gene Knockdown Techniques , Humans , Protein Interaction Mapping , Rats
5.
Cell Rep ; 5(6): 1511-8, 2013 Dec 26.
Article in English | MEDLINE | ID: mdl-24360961

ABSTRACT

RNA-binding proteins play crucial roles in directing RNA translation to neuronal synapses. Staufen2 (Stau2) has been implicated in both dendritic RNA localization and synaptic plasticity in mammalian neurons. Here, we report the identification of functionally relevant Stau2 target mRNAs in neurons. The majority of Stau2-copurifying mRNAs expressed in the hippocampus are present in neuronal processes, further implicating Stau2 in dendritic mRNA regulation. Stau2 targets are enriched for secondary structures similar to those identified in the 3' UTRs of Drosophila Staufen targets. Next, we show that Stau2 regulates steady-state levels of many neuronal RNAs and that its targets are predominantly downregulated in Stau2-deficient neurons. Detailed analysis confirms that Stau2 stabilizes the expression of one synaptic signaling component, the regulator of G protein signaling 4 (Rgs4) mRNA, via its 3' UTR. This study defines the global impact of Stau2 on mRNAs in neurons, revealing a role in stabilization of the levels of synaptic targets.


Subject(s)
Neurons/metabolism , RNA Processing, Post-Transcriptional , RNA Stability , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , 3' Untranslated Regions , Animals , Cells, Cultured , Hippocampus/cytology , Hippocampus/metabolism , RGS Proteins/genetics , RGS Proteins/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Rats , Rats, Sprague-Dawley
6.
J Mol Med (Berl) ; 91(12): 1343-54, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23974990

ABSTRACT

Mutations in fused in sarcoma (FUS) in a subset of patients with amyotrophic lateral sclerosis (ALS) linked this DNA/RNA-binding protein to neurodegeneration. Most of the mutations disrupt the nuclear localization signal which strongly suggests a loss-of-function pathomechanism, supported by cytoplasmic inclusions. FUS-positive neuronal cytoplasmic inclusions are also found in a subset of patients with frontotemporal lobar degeneration (FTLD). Here, we discuss recent data on the role of alternative splicing in FUS-mediated pathology in the central nervous system. Several groups have shown that FUS binds broadly to many transcripts in the brain and have also identified a plethora of putative splice targets; however, only ABLIM1, BRAF, Ewing sarcoma protein R1 (EWSR1), microtubule-associated protein tau (MAPT), NgCAM cell adhesion molecule (NRCAM), and netrin G1 (NTNG1) have been identified in at least three of four studies. Gene ontology analysis of all putative targets unanimously suggests a role in axon growth and cytoskeletal organization, consistent with the altered morphology of dendritic spines and axonal growth cones reported upon loss of FUS. Among the axonal targets, MAPT/tau and NTNG1 have been further validated in biochemical studies. The next challenge will be to confirm changes of FUS-mediated alternative splicing in patients and define their precise role in the pathophysiology of ALS and FTLD.


Subject(s)
Alternative Splicing , Nervous System/metabolism , RNA-Binding Protein FUS/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Axons/metabolism , Axons/pathology , Brain/metabolism , Brain/pathology , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Gene Expression Regulation , Humans , Nervous System/pathology
7.
EMBO Rep ; 13(8): 759-64, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22710833

ABSTRACT

A subset of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) patients present pathological redistribution and aggregation of the nuclear protein fused in sarcoma (FUS) in the cytoplasm. Although FUS associates with the spliceosomal complex, no endogenous neuronal splicing targets have been identified. Here we identify Tau mRNA as a physiological splicing target of FUS. In mouse brain, FUS directly binds to Tau pre-mRNA, and knockdown of FUS in hippocampal neurons leads to preferential inclusion of Tau exons 3 and 10. FUS knockdown causes significant growth cone enlargement and disorganization reminiscent of Tau loss of function. These findings suggest that disturbed cytoskeletal function and enhanced expression of the neurodegeneration-associated Tau exon 10 might contribute to FTLD/ALS with FUS inclusions.


Subject(s)
Nerve Degeneration/genetics , Nerve Degeneration/pathology , RNA Splicing/genetics , RNA-Binding Proteins/metabolism , tau Proteins/genetics , Animals , Axons/metabolism , Cytoskeleton/metabolism , Exons/genetics , Gene Knockdown Techniques , Genes, Reporter , Growth Cones/metabolism , HEK293 Cells , Humans , Mice , Phenotype , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Precursors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , tau Proteins/metabolism
8.
J Cereb Blood Flow Metab ; 32(5): 835-43, 2012 May.
Article in English | MEDLINE | ID: mdl-22234339

ABSTRACT

The development of the brain tissue damage in ischemic stroke is composed of an immediate component followed by an inflammatory response with secondary tissue damage after reperfusion. Fisetin, a flavonoid, has multiple biological effects, including neuroprotective and antiinflammatory properties. We analyzed the effects of fisetin on infarct size and the inflammatory response in a mouse model of stroke, temporary middle cerebral artery occlusion, and on the activation of immune cells, murine primary and N9 microglial and Raw264.7 macrophage cells and human macrophages, in an in vitro model of inflammatory immune cell activation by lipopolysaccharide (LPS). Fisetin not only protected brain tissue against ischemic reperfusion injury when given before ischemia but also when applied 3 hours after ischemia. Fisetin also prominently inhibited the infiltration of macrophages and dendritic cells into the ischemic hemisphere and suppressed the intracerebral immune cell activation as measured by intracellular tumor necrosis factor α (TNFα) production. Fisetin also inhibited LPS-induced TNFα production and neurotoxicity of macrophages and microglia in vitro by suppressing nuclear factor κB activation and JNK/Jun phosphorylation. Our findings strongly suggest that the fisetin-mediated inhibition of the inflammatory response after stroke is part of the mechanism through which fisetin is neuroprotective in cerebral ischemia.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Brain Infarction/immunology , Dendritic Cells/immunology , Flavonoids/pharmacology , Macrophages/immunology , Neuroprotective Agents/pharmacology , Animals , Brain Infarction/metabolism , Brain Infarction/pathology , Cell Line , Dendritic Cells/metabolism , Dendritic Cells/pathology , Disease Models, Animal , Flavonols , Humans , Infarction, Middle Cerebral Artery/immunology , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , JNK Mitogen-Activated Protein Kinases/immunology , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/toxicity , MAP Kinase Kinase 4/immunology , MAP Kinase Kinase 4/metabolism , Macrophages/metabolism , Macrophages/pathology , Mice , Microglia/immunology , Microglia/metabolism , Microglia/pathology , Phosphorylation/drug effects , Reperfusion Injury/immunology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Time Factors , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...