Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 135(45): 16912-25, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24147834

ABSTRACT

Previous work has shown that certain steroidal bis-(N-phenyl)ureas, derived from cholic acid, form crystals in the P6(1) space group with unusually wide unidimensional pores. A key feature of the nanoporous steroidal urea (NPSU) structure is that groups at either end of the steroid are directed into the channels and may in principle be altered without disturbing the crystal packing. Herein we report an expanded study of this system, which increases the structural variety of NPSUs and also examines their inclusion properties. Nineteen new NPSU crystal structures are described, to add to the six which were previously reported. The materials show wide variations in channel size, shape, and chemical nature. Minimum pore diameters vary from ~0 up to 13.1 Å, while some of the interior surfaces are markedly corrugated. Several variants possess functional groups positioned in the channels with potential to interact with guest molecules. Inclusion studies were performed using a relatively accessible tris-(N-phenyl)urea. Solvent removal was possible without crystal degradation, and gas adsorption could be demonstrated. Organic molecules ranging from simple aromatics (e.g., aniline and chlorobenzene) to the much larger squalene (M(w) = 411) could be adsorbed from the liquid state, while several dyes were taken up from solutions in ether. Some dyes gave dichroic complexes, implying alignment of the chromophores in the NPSU channels. Notably, these complexes were formed by direct adsorption rather than cocrystallization, emphasizing the unusually robust nature of these organic molecular hosts.

2.
Dalton Trans ; 42(1): 100-15, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23080322

ABSTRACT

The following unsymmetrical diphosphines have been prepared: o-C6H4(CH2PtBu2)(PR2) where R = PtBu2 (L3a); PCg (L3b); PPh2 (L3c); P(o-C6H4CH3)2 (L3d); P(o-C6H4OCH3)2 (L3e) and o-C6H4(CH2PCg)(PCg) (L3f) where PCg is 6-phospha-2,4,8-trioxa-1,3,5,7-tetramethyladamant-6-yl. Hydromethoxycarbonylation of ethene under commercially relevant conditions has been investigated in the presence of Pd complexes of each of the ligands L3a­f and the results compared with those obtained with the commercially used o-C6H4(CH2PtBu2)2 (L1a). The Pd complexes of the bulkiest ligands L3a, L3b and L3f are highly active catalysts but the Pd complexes of L3c, L3d and L3e are completely inactive. The crystal structures of the complexes [PtCl2(L1a)] (1a) and [PtCl2(L3a)] (2a) have been determined and show that the crystallographic bite angles and cone angles are greater for L1a than L3a. Solution NMR studies show that the seven-membered chelate in 1a is more rigid than the six-membered chelate in 2a. Treatment of [PtCl(CH3)(cod)] with L3a­f gave [PtCl(CH3)(L3a­f)] as mixtures of 2 isomers 3a­f and 4a­f. The ratio of the products 4:3 ranges from 100:1 to 1:20, the precise proportion is apparently governed by a balance of two competing factors, steric bulk and the antisymbiotic effect. The palladium complexes [PdCl(CH3)(L3b)] (5b/6b) and [PdCl(CH3)(L3c)] (5c/6c) react with labelled 13CO to give the corresponding acyl species [PdCl(13COCH3)(L3b)] (7b/8b) and [PdCl(13COCH3)(L3c)] (7c/8c). Treatment of [PdCl(13COCH3)(L)] with MeOH gave CH3(13)COOMe rapidly when L = L3b but very slowly when L = L3c paralleling the contrasting catalytic activity of the Pd complexes of these two ligands.

3.
Chem Soc Rev ; 41(1): 413-47, 2012 Jan 07.
Article in English | MEDLINE | ID: mdl-21892512

ABSTRACT

The aim of this critical review is to provide a broad but digestible overview of mechanochemical synthesis, i.e. reactions conducted by grinding solid reactants together with no or minimal solvent. Although mechanochemistry has historically been a sideline approach to synthesis it may soon move into the mainstream because it is increasingly apparent that it can be practical, and even advantageous, and because of the opportunities it provides for developing more sustainable methods. Concentrating on recent advances, this article covers industrial aspects, inorganic materials, organic synthesis, cocrystallisation, pharmaceutical aspects, metal complexes (including metal-organic frameworks), supramolecular aspects and characterization methods. The historical development, mechanistic aspects, limitations and opportunities are also discussed (314 references).

4.
Organometallics ; 31(15): 5302-5306, 2012 Aug 13.
Article in English | MEDLINE | ID: mdl-24882917

ABSTRACT

We have expanded the ligand knowledge base for bidentate P,P- and P,N-donor ligands (LKB-PP, Organometallics2008, 31, 1372-1383) by 208 ligands and introduced an additional steric descriptor (nHe8). This expanded knowledge base now captures information on 334 bidentate ligands and has been processed with principal component analysis (PCA) of the descriptors to produce a detailed map of bidentate ligand space, which better captures ligand variation and has been used for the analysis of ligand properties.

7.
Dalton Trans ; 40(43): 11497-510, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-21952645

ABSTRACT

The structures of [{RhLL'(µ-X)}(2)] [LL' = cod, (CO)(2), (CO)(PPh(3)) or {P(OPh)(3)}(2); X = mt or taz], prepared from [{RhLL'(µ-Cl)}(2)] and HX in the presence of NEt(3), depend on the auxiliary ligands LL'. The head-to-tail arrangement of the two N,S-bridges is accompanied by a rhodium-eclipsed conformation for the majority but the most hindered complex, [{Rh[P(OPh)(3)](2)(µ-taz)}(2)], uniquely adopts a sulfur-eclipsed structure. The least hindered complex, [{Rh(CO)(2)(µ-mt)}(2)], shows intermolecular stacking of mt rings in the solid state. The complexes [{RhLL'(µ-X)}(2)] are chemically oxidised to trinuclear cations, [(RhLL')(3)(µ-X)(2)](+), most probably via reaction of one molecule of the dimer, in the sulfur-eclipsed form, with the fragment [RhLL'](+) formed by oxidative cleavage of a second.

8.
Dalton Trans ; 40(36): 9276-83, 2011 Sep 28.
Article in English | MEDLINE | ID: mdl-21837321

ABSTRACT

The tricarbonyl [Mn(CO)(3){HC(pz')(3)}][PF(6)] 1(+)[PF(6)](-) (pz' = 3,5-dimethylpyrazolyl) reacts with a range of P-, N- and C-donor ligands, L, in the presence of trimethylamine oxide to give [Mn(CO)(2)L{HC(pz')(3)}](+) {L = PEt(3)3(+), P(OEt)(3)4(+), P(OCH(2))(3)CEt 5(+), py 6(+), MeCN 7(+), CNBu(t)8(+) and CNXyl 9(+)}. The complex [Mn(CO)(2)(PMe(3)){HC(pz')(3)}](+)2(+) is formed by reaction of 7(+) with PMe(3). Complexes 2(+) and 6(+) were structurally characterised by X-ray diffraction methods. Reaction of 7(+) with half a molar equivalent of 4,4'-bipyridine gives a purple compound assumed to be the bridged dimer [{HC(pz')(3)}Mn(CO)(2)(µ-4,4'-bipy)Mn(CO)(2){HC(pz')(3)}](2+)10(2+). The relative electron donating ability of HC(pz')(3) has been established by comparison with the cyclopentadienyl and tris(pyrazolyl)borate analogues. Cyclic voltammetry shows that each of the complexes undergoes an irreversible oxidation. The correlation between the average carbonyl stretching frequency and the oxidation potential for complexes of P- and C-donor ligands is coincident with the correlation observed for [Mn(CO)(3-m)L(m)(η-C(5)H(5-n)Me(n))]. The data for complexes of N-donor ligands, however, are not coincident due to the presence of a node (and phase change) between the metal and the N-donor in the HOMO of the complex as suggested by preliminary DFT calculations.

9.
Dalton Trans ; 40(27): 7137-46, 2011 Jul 21.
Article in English | MEDLINE | ID: mdl-21643610

ABSTRACT

The homodiphosphanes CgP-PCg (1) and PhobP-PPhob (2) and the heterodiphosphanes CgP-PPhob (3), CgP-PPh(2) (4a), CgP-P(o-Tol)(2) (4b), CgP-PCy(2) (4c), CgP-P(t)Bu(2) (4d), PhobP-PPh(2) (5a), PhobP-P(o-Tol)(2) (5b), PhobP-PCy(2) (5c), PhobP-P(t)Bu(2) (5d) where CgP = 6-phospha-2,4,8-trioxa-1,3,5,7-tetramethyladamant-9-yl and PhobP = 9-phosphabicyclo[3.3.1]nonan-9-yl have been prepared from CgP(BH(3))Li or PhobP(BH(3))Li and the appropriate halophosphine. The formation of 1 is remarkably diastereoselective, with the major isomer (97% of the product) assigned to rac-1. Restricted rotation about the P-P bond of the bulky meso-1 is detected by variable temperature (31)P NMR spectroscopy. Diphosphane 3 reacts with BH(3) to give a mixture of CgP(BH(3))-PPhob and CgP-PPhob(BH(3)) which was unexpected in view of the predicted much greater electron-richness of the PhobP site. Each of the diphosphanes was treated with dimethylacetylene dicarboxylate (DMAD) in order to determine their propensity for diphosphination. The homodiphosphanes 1 and 2 did not react with DMAD. The CgP-containing heterodiphosphanes 4a-d all added to DMAD to generate the corresponding cis alkenes CgPCH(CO(2)Me)=CH(CO(2)Me)PR(2) (6a-d) which have been used in situ to form chelate complexes of the type [MCl(2)(diphos)] (7a-d) where M = Pd or Pt. The PhobP-containing heterodiphosphanes 3 and 5a-d react anomalously with DMAD and do not give the products of diphosphination. The X-ray crystal structures of the diphosphanes 2, 3, 4a, and 5a, the monoxide and dioxide of diphosphane 1, and the platinum chelate complex 7c have been determined and their structures are discussed.

10.
Dalton Trans ; 40(19): 5316-23, 2011 May 21.
Article in English | MEDLINE | ID: mdl-21475742

ABSTRACT

Reaction of [Pd(PPh(3))(4)] with 1,1-dichloro-2,3-diarylcyclopropenes gives complexes of the type cis-[PdCl(2)(PPh(3))(C(3)(Ar)(2))] (Ar = Ph 5, Mes 6). Reaction of [Pd(dba)(2)] with 1,1-dichloro-2,3-diarylcyclopropenes in benzene gave the corresponding binuclear palladium complexes trans-[PdCl(2)(C(3)(Ar)(2))](2) (Ar = Ph 7, p-(OMe)C(6)H(4)8, p-(F)C(6)H(4)9). Alternatively, when the reactions were performed in acetonitrile, the complexes trans-[PdCl(2)(NCMe)(C(3)(Ar)(2))] (Ar = Ph 10, p-(OMe)C(6)H(4)11 and p-(F)C(6)H(4)) 12) were isolated. Addition of phosphine ligands to the binuclear palladium complex 7 or acetonitrile adducts 11 and 12 gave complexes of the type cis-[PdCl(2)(PR(3))(C(3)(Ar)(2))] (Ar = Ph, R = Cy 13, Ar = p-(OMe)C(6)H(4), R = Ph 14, Ar = p-(F)C(6)H(4), R = Ph 15). Crystal structures of complexes 6·3.25CHCl(3), 10, 11·H(2)O and 12-15 are reported. DFT calculations of complexes 10-12 indicate the barrier to rotation about the carbene-palladium bond is very low, suggesting limited double bond character in these species. Complexes 5-9 were tested for catalytic activity in C-C coupling (Mizoroki-Heck, Suzuki-Miyaura and, for the first time, Stille reactions) and C-N coupling (Buchwald-Hartwig amination) showing excellent conversion with moderate to high selectivity.

11.
Dalton Trans ; 40(17): 4647-59, 2011 May 07.
Article in English | MEDLINE | ID: mdl-21423986

ABSTRACT

The potassium salts of the new S(2)N-heteroscorpionate ligand hydrobis(methimazolyl)(3,5-dimethylpyrazolyl)borate [HB(mt)(2)(pz(3,5-Me))](-) and its known analogue hydrobis(methimazolyl)(pyrazolyl)borate [HB(mt)(2)(pz)](-) (prepared from KTp' or KTp and methimazole, Hmt), and the adduct KTp·Hmt have polymeric structures in the solid state (the first a ladder and the other two chains). The iridaboratranes [IrHLL'{B(mt)(2)X}] (X = pz(3,5-Me) or pz), prepared from the heteroscorpionate anion and [{Ir(cod)(µ-Cl)}(2)] (LL' = cod), subsequent carbonylation [LL' = (CO)(2)] and then reaction with phosphine [LL' = (CO)(PR(3)), R = Ph or Cy], have a pendant pyrazolyl ring and a bicyclo-[3.3.0] cage formed by an S(2)-bound B(mt)(2) fragment. The binuclear species [(cod)HIr{µ-B(mt)(3)}IrCl(cod)], the only isolated product of the reaction of KTm with [{Ir(cod)(µ-Cl)}(2)], also has an S(2)-bound iridaboratrane unit but with the third mt ring linked to square planar iridium(I).

12.
Dalton Trans ; 39(48): 11616-27, 2010 Dec 28.
Article in English | MEDLINE | ID: mdl-21038065

ABSTRACT

The heteroscorpionate ligands [HB(taz)(2)(pz(R))](-) (pz(R) = pz, pz(Me2), pz(Ph)) and [HB(taz)(pz)(2)](-), synthesised from the appropriate potassium hydrotris(pyrazolyl)borate salt and 4-ethyl-3-methyl-5-thioxo-1,2,4-triazole (Htaz), react with [{Rh(cod)(µ-Cl)}(2)] to give [Rh(cod)Tx] {Tx = HB(taz)(2)(pz), HB(taz)(2)(pz(Me2)), HB(taz)(2)(pz(Ph)), HB(taz)(pz)(2)}; the heteroscorpionate rhodaboratrane [Rh{B(taz)(2)(pz(Me2))}{HB(taz)(2)(pz(Me2))}] is the only isolable product from the reaction of [{Rh(nbd)(µ-Cl)}(2)] with K[HB(taz)(2)(pz(Me2))]. Carbonylation of the cod complexes gave a mixture of [Rh(CO)(2)Tx] and [(RhTx)(2)(µ-CO)(3)] which reacts with PR(3) to give [Rh(CO)(PR(3))Tx] (R = Cy, NMe(2), Ph, OPh). In the solid state the complexes are square planar with the particular structure dependent on the steric and/or electronic properties of the scorpionate and ancillary ligands. The complex [Rh(cod){HB(taz)(pz)(2)}] has the heteroscorpionate κ(2)[N(2)]-coordinated to rhodium with the B-H bond directed away from the rhodium square plane while [Rh(cod){HB(taz)(2)(pz(Me2))}] is κ(2)[SN]-coordinated, with the B-H bond directed towards the metal. The complexes [Rh(CO)(PPh(3)){HB(taz)(2)(pz)}] and [Rh(CO)(PPh(3)){HB(taz)(2)(pz(Me2))}] are also κ(2)[SN]-coordinated but with the pyrazolyl ring cis to PPh(3); in the former the B-H bond is directed towards rhodium while in the latter the ring is pseudo-parallel to the rhodium square plane, as also found for [Rh(CO)(2){HB(taz)(2)(pz(Me2))}]. The analogues [Rh(CO)(PR(3)){HB(taz)(2)(pz(Me2))}] (R = Cy, NMe(2)) have the phosphines trans to the pyrazolyl ring. Uniquely, [Rh(CO)(PPh(3)){HB(taz)(2)(pz(Ph))}] is κ(2)[S(2)]-coordinated. A qualitative mechanism is given for the rapid ring-exchange, and hence isomerisation, observed in solution.

13.
Inorg Chem ; 49(22): 10475-85, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20945835

ABSTRACT

Crystalline coordination compounds [MnCl(2)(Hpz)(2)] 3, [CdCl(2)(Hpz)(2)] 5, [MnCl(2)(Him)(2)] 9, and [CdCl(2)(Him)(2)] 13 (Him = imidazole; Hpz = pyrazole) can be synthesized in solid state reactions by grinding together the appropriate metal chloride and 2 equiv of the neutral ligand. Similarly, grinding together the metal chlorides with the ligand hydrochloride salts produces the halometallate salts [H(2)pz][MnCl(3)(OH(2))] 1, [H(2)pz][CdCl(4)] 4, [H(2)im](6)[MnCl(6)][MnCl(4)] 8, and [H(2)im](6)[CdCl(6)][CdCl(4)] 11. In contrast, reacting the metal chloride salt with the ligand in concentrated HCl solution yields a second set of salts [H(2)pz][MnCl(3)] 2, [H(2)im][MnCl(3)(OH(2))(2)] 7, and [H(2)im][CdCl(3)(OH(2))]·H(2)O 12. Compound 5 can be partly dehydrochlorinated by grinding with KOH to form an impure sample of the pyrazolate compound [Cd(pz)(2)] 6, while recrystallizing 9 from ethanol yielded crystals of solvated [Mn(4)Cl(8)(Him)(8)] 10. The crystal structure determinations of 1, 2, 4, 11, and 12 are reported.

14.
Proc Natl Acad Sci U S A ; 107(37): 16033-8, 2010 Sep 14.
Article in English | MEDLINE | ID: mdl-20798344

ABSTRACT

The synthesis of the salt 3 and metallo-organic framework (MOF) [{(4,4(')-bipy)CoBr(2)}(n)] 4 by a range of solid state (mechanochemical and thermochemical) and solution methods is reported; they are isostructural with their respective chloride analogues 1 and 2. 3 and 4 can be interconverted by means of HBr elimination and absorption. Single phases of controlled composition and general formula [4,4(')-H(2)bipy][CoBr(4-x)Cl(x)] 5(x) may be prepared from 2 and 4 by solid--gas reactions involving HBr or HCl respectively. Crystalline single phase samples of 5(x) and [{(4,4(')-bipy)CoBr(2-x)Cl(x)}(n)] 6(x) were prepared by solid-state mechanochemical routes, allowing fine control over the composition and unit cell volume of the product. Collectively these methods enable continuous variation of the unit cell dimensions of the salts [4,4(')-H(2)bipy][CoBr(4-x)Cl(x)] (5(x)) and the MOFs [{(4,4(')-bipy)CoBr(2-x)Cl(x)}(n)] (6(x)) by varying the bromide to chloride ratio and establish a means of controlling MOF composition and the lattice metrics, and so the physical and chemical properties that derive from it.

16.
Dalton Trans ; 39(30): 6974-84, 2010 Aug 14.
Article in English | MEDLINE | ID: mdl-20556305

ABSTRACT

Solid pyrazole reacts with HCl gas to form pyrazolium chloride [H2pz]Cl, which reacts in the solid state, under grinding, with metal chlorides MCl2 (M = Co, Zn, Cu) to form the pyrazolium tetrachlorometallate salts [H2pz]2[MCl4] (M = Co 1, Zn 3, Cu 5). Salt 5 cannot be made in solution, and upon standing at room temperature spontaneously emits HCl to give the coordination compound [CuCl2(Hpz)2] (6). Compounds 1 and 3 do not exhibit this behaviour, but can be ground together with bases such as KOH or K2CO3 to effect the elimination of HCl and afford their respective [MCl2(Hpz)2] compounds (M = Co 2, Zn 4). 2, 4 and 6 can also be synthesised in the solid-state by direct reaction of the appropriate metal chloride with pyrazole, or by reaction of a basic metal salt such as the carbonate or hydroxide with pyrazolium chloride. 4 and 6 {and their nickel analogue [NiCl2(Hpz)2]} can be ground with a further two equivalents of base to make the known polymeric metal pyrazolates [M(pz)2]n (M = Ni 7, Cu 8, Zn 9); the same reaction appears to work for the cobalt analogue 2, but the presumed product [Co(pz)2]n10 then decomposes by oxidation. The imidazolate complexes [M(im)2] (M = Ni, 11; Cu, 12; Zn, 13; Co, 14) were similarly prepared by grinding the appropriate [M(Him)2Cl2] precursor with KOH.


Subject(s)
Coordination Complexes/chemical synthesis , Pyrazoles/chemistry , Coordination Complexes/chemistry , Pyrazoles/chemical synthesis , Salts/chemical synthesis , Salts/chemistry
17.
Dalton Trans ; 39(22): 5221-30, 2010 Jun 14.
Article in English | MEDLINE | ID: mdl-20379586

ABSTRACT

The reaction of potassium hydrotris(methimazolyl)borate {KTm = HB(mt)(3)} with [{Rh(cod)(mu-Cl)}(2)] gave [Rh(cod)Tm] while the complexes [Rh(CO)(PR(3))Tm] (R = Ph or NMe(2)) and [Rh{P(OPh)(3)}(2)Tm] were isolated from light-sensitive [Rh(CO)(2)Tm], prepared in situ from KTm and [{Rh(CO)(2)(mu-Cl)}(2)], and PR(3) or P(OPh)(3) under CO. The complexes [Rh(cod)Tm] and [Rh(CO)(PR(3))Tm] (R = Ph or NMe(2)) adopt kappa(3)-S(2)H structures in the solid state but in all cases rapid dynamic exchange processes render the three mt rings equivalent in solution. Oxidation of [Rh(CO)(PPh(3))Tm] with [Fe(eta-C(5)H(5))(2)][PF(6)] in the presence of NHPr(i)(2) gave a mixture containing two monocationic rhodaboratranes. One is assigned as [Rh(CO)(PPh(3)){B(mt)(3)}][PF(6)] on the basis of IR and NMR spectroscopy, with boron trans to the phosphine ligand. The second, structurally characterised as [Rh(PPh(3)){B(mt)(3)}][PF(6)], has boron trans to an empty coordination site, vacated by CO. Similar oxidation of [Rh(cod)Tm] gave small quantities of the boron-fluorinated bis(scorpionate) [Rh{FB(mt)(3)}(2)][PF(6)].

18.
Dalton Trans ; 39(15): 3714-24, 2010 Apr 21.
Article in English | MEDLINE | ID: mdl-20354624

ABSTRACT

Solid-state reactions of palladium(II) and platinum(II) chloride complexes with imidazole (Him) and pyrazole (Hpz) or their hydrochloride salts are shown to produce metal complex salts and coordination compounds. Thus, K(2)[MCl(4)] or MCl(2) can be ground with imidazolium chloride ([H(2)im]Cl) to produce the salts [H(2)im](2)[MCl(4)] (M = Pd, 1; Pt, 5), which can then be dehydrochlorinated in the solid state to produce the coordination compounds trans-[PdCl(2)(Him)(2)] 3 or cis-[PtCl(2)(Him)(2)] 6. The complex cis-[PdCl(2)(Him)(2)] 2 is produced when Pd(OAc)(2) is ground with [H(2)im]Cl. Reaction of platinum chloride reagents with imidazole (Him) also produces cis-[PtCl(2)(Him)(2)] 6, but reaction of imidazole with analogous palladium chloride reagents first produces [Pd(Him)(4)]Cl(2) 4 which then slowly converts to trans-[PdCl(2)(Him)(2)] 3. Grinding pyrazolium chloride with K(2)[MCl(4)] produces [H(2)pz](2)[MCl(4)] (M = Pd, 7; Pt, 10), which may also be dehydrochlorinated in the solid state to produce the coordination compounds trans-[PdCl(2)(Hpz)(2)] 8 or cis-[PtCl(2)(Hpz)(2)] 11. Grinding K(2)[PdCl(4)] or PdCl(2) with pyrazole gives [Pd(Hpz)(4)]Cl(2) 9, which is then slowly converted into trans-[PdCl(2)(Hpz)(2)] 8. Grinding PtCl(2) with Hpz generates [Pt(Hpz)(4)]Cl(2) 12, but using K(2)PtCl(4) as the metal source does not generate the same product. The single-crystal structures of 8, a new polymorph of 11 and [H(2)pz](2)[PtCl(6)].2H(2)O (isolated as a decomposition product) are reported for the first time, and the structures of 5 and 10 have been solved ab ibitio from XRPD data.

19.
Dalton Trans ; (2): 560-7, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-20023994

ABSTRACT

A series of symmetric and unsymmetric N,N-bis(diarylphosphino)amine ('PNP') ligands (Ar2PN(R)PNAr'2: R = Me, Ar2 = o-anisyl, Ar'2 = Ph, 1, R = Me, Ar2 = o-tolyl, Ar'2 = Ph, 2, R = Me, Ar2 = Ph(o-ethyl), Ar'2 = Ph, 3, R = Me, Ar2 = Ar'2 = o-anisyl, 4, R = iPr, Ar2 = Ar'2 = Ph, 5) and symmetric N,N'-bis(diarylphosphino)dimethylhydrazine ('PNNP') ligands (Ar2PN(Me)N(Me)PAr2: Ar2 = o-tolyl, 6, Ar2 = o-anisyl, 7) have been synthesised. Catalytic screening for ethene/styrene co-trimerisation and isoprene trimerisation was performed via the in situ complexation to [CrCl3(THF)3] followed by activation with methylaluminoxane (MAO). PNNP catalytic systems showed a significant increase in activity and selectivity over previously reported PNP systems in isoprene trimerisation. Comparing the symmetric and unsymmetric variants in ethene and styrene co-trimerisation resulted in a switch in selectivity, an unsymmetric catalytic (o-anisyl)2PN(Me)PPh2 (1) ligand system affording unique incorporation of two styrenic monomers into the co-trimer product distribution differing from the familiar two ethene and one styrene -substituted alkenes. Complexes of the type [(diphosphine)Cr(CO)4] 8-11 were also synthesised, the single-crystal X-ray diffraction of which are reported. We propose the mechanisms of these catalytic transformations and an insight into the effect of the ligand series on the chromacyclic catalytic intermediates.

20.
Chem Commun (Camb) ; 46(1): 100-2, 2010 Jan 07.
Article in English | MEDLINE | ID: mdl-20024306

ABSTRACT

An efficient, classical resolution of the versatile P-ligand intermediate 6-phospha-2,4,8-trioxa-adamantane (CgPH) is described and the rhodium complex of the optically pure secondary phosphine beta-CgPH is an active and moderately selective asymmetric hydrogenation catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...