Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Opt Express ; 22(11): 13170-89, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24921513

ABSTRACT

A continuous-wave, rapidly swept cavity-ringdown spectroscopic technique has been developed for localized atmospheric sensing of trace gases at remote sites. It uses one or more passive open-path optical sensor units, coupled by optical fiber over distances of >1 km to a single transmitter/receiver console incorporating a photodetector and a swept-frequency diode laser tuned to molecule-specific near-infrared wavelengths. Ways to avoid interference from stimulated Brillouin scattering in long optical fibers have been devised. This rugged open-path system, deployable in agricultural, industrial, and natural atmospheric environments, is used to monitor ammonia in air. A noise-limited minimum detectable mixing ratio of ~11 ppbv is attained for ammonia in nitrogen at atmospheric pressure.

2.
Opt Lett ; 38(15): 2893-6, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23903172

ABSTRACT

We present a technique for the simultaneous dissemination of high-precision optical-frequency signals to multiple independent remote sites on a branching optical-fiber network. The technique corrects optical-fiber length fluctuations at the output of the link, rather than at the input as is conventional. As the transmitted optical signal remains unaltered until it reaches the remote site, it can be transmitted simultaneously to multiple remote sites on an arbitrarily complex branching network. This technique maintains the same servo-loop bandwidth limit as in conventional techniques and is compatible with active telecommunication links.

3.
Opt Express ; 21(16): 18754-64, 2013 Aug 12.
Article in English | MEDLINE | ID: mdl-23938791

ABSTRACT

We demonstrate long-distance (≥100-km) synchronization of the phase of a radio-frequency reference over an optical-fiber network without needing to actively stabilize the optical path length. Frequency mixing is used to achieve passive phase-conjugate cancellation of fiber-length fluctuations, ensuring that the phase difference between the reference and synchronized oscillators is independent of the link length. The fractional radio-frequency-transfer stability through a 100-km "real-world" urban optical-fiber network is 6 × 10(-17) with an averaging time of 10(4) s. Our compensation technique is robust, providing long-term stability superior to that of a hydrogen maser. By combining our technique with the short-term stability provided by a remote, high-quality quartz oscillator, this system is potentially applicable to transcontinental optical-fiber time and frequency dissemination where the optical round-trip propagation time is significant.

4.
Opt Express ; 18(19): 20059-71, 2010 Sep 13.
Article in English | MEDLINE | ID: mdl-20940896

ABSTRACT

The greenhouse-gas molecules CO(2), CH(4), and H(2)O are detected in air within a few ms by a novel cavity-ringdown laser-absorption spectroscopy technique using a rapidly swept optical cavity and multi-wavelength coherent radiation from a set of pre-tuned near-infrared diode lasers. The performance of various types of tunable diode laser, on which this technique depends, is evaluated. Our instrument is both sensitive and compact, as needed for reliable environmental monitoring with high absolute accuracy to detect trace concentrations of greenhouse gases in outdoor air.


Subject(s)
Complex Mixtures/analysis , Gases/analysis , Lasers, Semiconductor , Microchemistry/instrumentation , Spectrophotometry, Infrared/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis
5.
Opt Lett ; 33(20): 2368-70, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18923625

ABSTRACT

A novel form of extended-cavity diode laser attains robust tunable single-frequency operation with narrow linewidth. The laser cavity includes a self-pumped photorefractive phase-conjugate reflector for wavelength-adaptive narrowband feedback and a compact high-finesse tunable intracavity ring filter for single-longitudinal-mode selectivity and control. Its performance around 830 nm is verified with a simple Fabry-Perot laser diode and by Doppler-free two-photon spectroscopy in atomic cesium.

6.
J Phys Chem A ; 111(49): 12839-53, 2007 Dec 13.
Article in English | MEDLINE | ID: mdl-18052311

ABSTRACT

Time-resolved infrared-ultraviolet double resonance (IR-UV DR) spectroscopy provides a distinctive way to examine collision-induced state-to-state energy transfer between rotational J-levels in vibrational manifolds of small polyatomic molecules, such as acetylene (C2H2) in its electronic ground state X. We consider the 4nuCH rovibrational manifold of C2H2 at approximately 12,700 cm(-1), where the principal source of IR-brightness is the (nu1+3nu3) or (1 0 3 0 0)0 Sigma+u vibrational combination level. In this highly congested manifold, anharmonic, l-resonance, and Coriolis couplings affect the J-levels of interest, implicating them in a complicated variety of intramolecular dynamics. Previous papers of this series have reported several seemingly anomalous J-resolved phenomena induced by collisions in C2H2 gas at room temperature with pressures and IR-UV pump-probe delay intervals corresponding to remarkably high Lennard-Jones collisional efficiencies P: odd-DeltaJ rotational energy transfer (10(-3)

7.
J Phys Chem A ; 110(9): 3307-19, 2006 Mar 09.
Article in English | MEDLINE | ID: mdl-16509657

ABSTRACT

The 4nu(CH) rovibrational manifold around 12 700 cm(-1) in the electronic ground state, X, of acetylene (C2H2) is monitored by time-resolved infrared-ultraviolet double-resonance (IR-UV DR) spectroscopy. An IR laser pulse initially prepares rotational J states, associated with the "IR-bright" (nu1 + 3nu3) or (1 0 3 0 0)0 vibrational combination level, and subsequent collision-induced state-to-state energy transfer is probed by UV laser-induced fluorescence. Anharmonic, l-resonance, and Coriolis couplings affect the J states of interest, resulting in a congested rovibrational manifold that exhibits complex intramolecular dynamics. In preceding papers in this series, we have described three complementary forms of the IR-UV DR experiment (IR-scanned, UV-scanned, and kinetic) on collision-induced rovibrational satellites, comprising both regular even-DeltaJ features and unexpected odd-DeltaJ features. This paper examines an unusual collision-induced quasi-continuous background (CIQCB) effect that is apparently ubiquitous, accompanying regular even-DeltaJ rovibrational energy transfer and accounting for much of the observed collision-induced odd-DeltaJ satellite structure; certain IR-bright (1 0 3 0 0)0 rovibrational states (e.g., J = 12) are particularly prominent in this regard. We examine the mechanism of this CIQCB phenomenon in terms of a congested IR-dark rovibrational manifold that is populated by collisional transfer from the nearly isoenergetic IR-bright (1 0 3 0 0)0 submanifold.

8.
Appl Opt ; 44(31): 6752-61, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16270564

ABSTRACT

A cavity ringdown spectrometer, based on a continuous-wave swept-frequency laser, enables efficient, rapid recording of wide-ranging absorption spectra as characteristic spectral signatures of airborne molecules. The rapidly swept laser frequency resonates with the longitudinal modes of the ringdown cavity, effectively sampling the absorption spectrum of an intracavity gas at intervals defined by the cavity's free spectral range and generating a full absorption spectrum within a single rapid sweep of the widely tunable laser frequency. We report a new analog detection scheme that registers a single data point for each buildup and ringdown decay event without logging details of the full signal waveform; this minimizes demand on digitizer speed and memory depth, reducing the time scale of data processing. This results in a compact, robust, easy-to-use instrument that offers fresh prospects for spectroscopic sensing of trace species in the atmosphere.

9.
J Phys Chem B ; 109(17): 8332-43, 2005 May 05.
Article in English | MEDLINE | ID: mdl-16851977

ABSTRACT

Collision-induced state-to-state molecular energy transfer between rovibrational states in the 12,700 cm(-1) 4nu(CH) manifold of the electronic ground state X of acetylene (C(2)H(2)) is monitored by time-resolved infrared-ultraviolet double resonance (IR-UV DR) spectroscopy. Rotational J-states associated with the (nu(1) + 3nu(3)) or (1 0 3 0 0)(0) vibrational combination level, initially prepared by an IR pulse, are probed at approximately 299, approximately 296, or approximately 323 nm with UV laser-induced fluorescence via the Alpha electronic state. The rovibrational J-states of interest belong to a congested manifold that is affected by anharmonic, l-resonance, and Coriolis couplings, yielding complex intramolecular dynamics. Consequently, collision-induced rovibrational satellites observed by IR-UV DR comprise not only regular even-DeltaJ features but also supposedly forbidden odd-DeltaJ features. A preceding paper (J. Phys. Chem. A 2003, 107, 10759) focused on low-J-value rovibrational levels of the 4nu(CH) manifold (particularly those with J = 0 and J = 1) whereas this paper examines locally perturbed states at higher values of J (particularly J = 17 and 18, which display anomalous doublet structure in IR-absorption spectra). Three complementary forms of IR-UV DR experiments (IR-scanned, UV-scanned, and kinetic) are used to address the extent to which intramolecular perturbations influence the efficiency of J-resolved collision-induced energy transfer with both even and odd DeltaJ.

10.
Opt Lett ; 30(24): 3413-5, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16389849

ABSTRACT

Narrowband pulsed 822 nm signal radiation from an injection-seeded optical parametric oscillator (OPO) system is used to record fluorescence-detected sub-Doppler two-photon excitation (TPE) spectra of atomic cesium. An optical-heterodyne technique is used to monitor the frequency chirp as well as the fluctuating central frequency of successive OPO output pulses, thereby providing a novel way to record sub-Doppler TPE spectra. The measured TPE linewidth approaches the ultimate limit imposed by the Fourier transform of the pulse's temporal profile, demonstrating the utility of this system for pulsed laser spectroscopy applications that require the highest possible resolution.

11.
Opt Lett ; 29(18): 2169-71, 2004 Sep 15.
Article in English | MEDLINE | ID: mdl-15460891

ABSTRACT

Narrowband tuning of a pulsed optical parametric oscillator (OPO) is achieved with a self-adaptive injection-seeded optical cavity employing a phase-conjugate reflector. This approach is used in a novel OPO system based on periodically poled KTiOPO4 and pumped at 532 nm by a pulsed Nd:YAG laser. The OPO is injection seeded at 835-855 nm by a continuous-wave tunable diode laser, which also enables a Rh:BaTiO3 photorefractive crystal to act as a wavelength-selective phase-conjugate reflector, with no need for active control of cavity length. The single-longitudinal-mode tunability and operational simplicity of this OPO system are demonstrated experimentally.

12.
Opt Lett ; 28(14): 1248-50, 2003 Jul 15.
Article in English | MEDLINE | ID: mdl-12885036

ABSTRACT

An injection-seeded optical parametric oscillator (OPO), based on periodically poled KTiOPO4 and pumped by a frequency-doubled, nanosecond-pulsed Nd:YAG laser, generates continuously tunable, single-longitudinal-mode, pulsed output at approximately 842 nm for high-resolution spectroscopy. Optical-heterodyne measurements show that the OPO frequency chirp increases linearly with detuning from the free-running (unseeded) OPO frequency and can be maintained as low as 10 MHz. Other factors affecting chirp are identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...