Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
MethodsX ; 7: 100820, 2020.
Article in English | MEDLINE | ID: mdl-32257837

ABSTRACT

Reconstructing Quaternary regional glaciations throughout the Himalaya, Tibet, and the adjoining mountains in Central Asia is challenging due to geological biases towards limited preservation of glacial deposits and chronological uncertainties. Here, we offer several statistical and mathematical model codes in R, in excel, and in MATLAB useful to develop regional glacial chronostratigraphies, especially in areas with distinct orographically-modulated climate. A complete R code is provided to generate a regional climate map using Cluster Analysis (CA) and Principal Component Analysis (PCA). Additional R codes include reduced chi-squared, Chauvenet's criterion, radial plotter/abanico plot, finite mixture model, and Student's t-test. These methods are useful in reconstructing the timing of local and regional glacial chronologies. An excel code to calculate equilibrium-line altitudes (ELAs) and steps to reconstruct glacier hypsometry are also made available to further aid to our understanding of the extent of paleoglaciations. A MATLAB code of the linear glacier flow model is included to reconstruct paleotemperatures using the length and slope of a glacier during past advances.•R statistical codes can be used/modified without restrictions for other researchers.•Easy steps to calculate ELAs and glacier hypsometry from the same data.•Paleo-temperature reconstruction utilizes already developed glacial chronologies and maps.

2.
Data Brief ; 26: 104412, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31516946

ABSTRACT

A comprehensive analysis of the variable temporal and spatial responses of tropical-subtropical high-altitude glaciers to climate change is critical for successful model predictions and environmental risk assessment in the Himalayan-Tibetan orogen. High-frequency Holocene glacier chronostratigraphies are therefore reconstructed in 79 glaciated valleys across the orogen using 519 published and 16 new terrestrial cosmogenic 10Be exposure age dataset. Published 10Be ages are compiled only for moraine boulders (excluding bedrock ages). These ages are recalculated using the latest ICE-D production rate calibration database and the scaling scheme models. Outliers for the individual moraine are detected using the Chauvenet's criterion. In addition, past equilibrium-line altitudes (ELAs) are determined using the area-altitude (AA), area accumulation ratio (AAR), and toe-headwall accumulation ratio (THAR) methods for each glacier advance. The modern maximum elevations of lateral moraines (MELM) are also used to estimate modern ELAs and as an independent check on mean ELAs derived using the above three methods. These data may serve as an essential archive for future studies focusing on the cryospheric and environmental changes in the Himalayan-Tibetan orogen. A more comprehensive analysis of the published and new 10Be ages and ELA results and a list of references are presented in Saha et al. (2019, High-frequency Holocene glacier fluctuations in the Himalayan-Tibetan orogen. Quaternary Science Reviews, 220, 372-400).

SELECTION OF CITATIONS
SEARCH DETAIL
...