Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Comb Devices (2019) ; STP1630: 53-64, 2020.
Article in English | MEDLINE | ID: mdl-35529525

ABSTRACT

Cutibacterium acnes (formerly Propionibacterium acnes) is a significant pathogen in periprosthetic joint infections (PJIs) in total shoulder arthroplasty. Poor outcomes seen in PJIs are due to the established C. acnes bacterial biofilms. The prolonged nature of C. acnes infections makes them difficult to treat with antibiotics. The goal of this study was to determine the relative efficacy of vancomycin compared with penicillin and doxycycline against planktonic and mature biofilms. Clinical isolates from PJI patients as well as a laboratory strain of C. acnes were tested. Planktonic minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were obtained using modified clinical laboratory standard index assays. Biofilm MICs and MBCs were also obtained. The MIC was determined for both using the PrestoBlue viability stain. The MBC was determined using differential reinforced clostridial medium agar plates for colony-forming unit analysis. Using the PrestoBlue viability reagent, the planktonic MIC values for vancomycin were significantly higher than doxycycline. Across 10 strains of C. acnes, all three antibiotics had decreased efficacy when comparing planktonic and biofilm cultures. Although effective antibiotic doses ranged from 1 to 1,000 µg/mL, only doxycycline achieved inhibitory and bactericidal concentrations in all tested strains. Penicillin failed to achieve the minimum biofilm inhibitory concentration (MBIC) in 60% of tested strains, whereas vancomycin failed in 80% of tested strains. Penicillin, doxycycline, and vancomycin have similar abilities in inhibiting C. acnes growth planktonically. The MBIC for doxycycline was within the clinical dosing range, suggesting C. acnes biofilm offers minimal tolerance to these antibiotics. The MBIC for penicillin was within clinical dosing ranges in only 60% of trials, suggesting the relative tolerance of C. acnes to penicillin. The minimum biofilm bactericidal concentration (MBBC) of doxycycline showed efficacy in 90% of trials, whereas penicillin and vancomycin achieved MBBC in 15% of samples.

2.
J Orthop Res ; 37(7): 1604-1609, 2019 07.
Article in English | MEDLINE | ID: mdl-30919513

ABSTRACT

Staphylococcus aureus biofilms have a high tolerance to antibiotics, making the treatment of periprosthetic joint infection (PJI) challenging. From a clinical perspective, bacteria from surgical specimens are cultured in a planktonic state to determine antibiotic sensitivity. However, S. aureus exists primarily as established biofilms in PJI. To address this dichotomy, we developed a prospective registry of total knee and hip arthroplasty PJI S. aureus isolates to quantify the activity of clinically important antibiotics against isolates grown as biofilms. S. aureus planktonic minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were assessed using clinical laboratory standard index assays for 10 antibiotics (cefazolin, clindamycin, vancomycin, rifampin, linezolid, nafcillin, gentamicin, trimethoprim/sulfamethoxazole, doxycycline, and daptomycin). Mature biofilms of each strain were grown in vitro, after which biofilm MIC (MBIC) and biofilm MBC (MBBC) were determined. Overall, isolates grown as biofilms displayed larger variations in antibiotic MICs as compared to planktonic MIC values. Only rifampin, doxycycline, and daptomycin had measurable biofilm MIC values across all S. aureus isolates tested. Biofilm MBC observations complemented biofilm MIC observations; rifampin, doxycycline, and daptomycin were the only antibiotics with measurable biofilm MBC values. 90% of S. aureus biofilms could be killed by rifampin, 50% by doxycycline, and only 15% by daptomycin. Biofilm formation increased bacterial antibiotic tolerance nonspecifically across all antibiotics, in both MSSA and MRSA samples. Rifampin and doxycycline were the most effective antibiotics at killing established S. aureus biofilms. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1604-1609, 2019.


Subject(s)
Anti-Bacterial Agents/pharmacology , Arthritis, Infectious/microbiology , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Prosthesis-Related Infections/microbiology , Humans , Microbial Sensitivity Tests
3.
J Biomed Mater Res A ; 103(12): 3907-18, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26014899

ABSTRACT

Wound healing is usually facilitated by the use of a wound dressing that can be easily applied to cover the wound bed, maintain moisture, and avoid bacterial infection. In order to meet all of these requirements, we developed an in situ forming biodegradable hydrogel (iFBH) system composed of a newly developed combination of biodegradable poly(ethylene glycol) maleate citrate (PEGMC) and poly(ethylene glycol) diacrylate (PEGDA). The in situ forming hydrogel systems are able to conform to the wound shape in order to cover the wound completely and prevent bacterial invasion. A 2(k) factorial analysis was performed to examine the effects of polymer composition on specific properties, including the curing time, Young's modulus, swelling ratio, and degradation rate. An optimized iFBH formulation was achieved from the systematic factorial analysis. Further, in vitro biocompatibility studies using adult human dermal fibroblasts (HDFs) confirmed that the hydrogels and degradation products are not cytotoxic. The iFBH wound dressing was conjugated and functionalized with antimicrobial peptides as well. Evaluation against bacteria both in vitro and in vivo in rats demonstrated that the peptide-incorporated iFBH wound dressing offered excellent bacteria inhibition and promoted wound healing. These studies indicated that our in situ forming antimicrobial biodegradable hydrogel system is a promising candidate for wound treatment.


Subject(s)
Anti-Infective Agents/administration & dosage , Bandages , Biocompatible Materials/chemistry , Hydrogels/chemistry , Peptides/administration & dosage , Polyethylene Glycols/chemistry , Animals , Anti-Infective Agents/therapeutic use , Citric Acid/chemistry , Elastic Modulus , Humans , Peptides/therapeutic use , Rats , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...