Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
NPJ Precis Oncol ; 8(1): 38, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374206

ABSTRACT

Consistent handling of samples is crucial for achieving reproducible molecular and functional testing results in translational research. Here, we used 229 acute myeloid leukemia (AML) patient samples to assess the impact of sample handling on high-throughput functional drug testing, mass spectrometry-based proteomics, and flow cytometry. Our data revealed novel and previously described changes in cell phenotype and drug response dependent on sample biobanking. Specifically, myeloid cells with a CD117 (c-KIT) positive phenotype decreased after biobanking, potentially distorting cell population representations and affecting drugs targeting these cells. Additionally, highly granular AML cell numbers decreased after freezing. Secondly, protein expression levels, as well as sensitivity to drugs targeting cell proliferation, metabolism, tyrosine kinases (e.g., JAK, KIT, FLT3), and BH3 mimetics were notably affected by biobanking. Moreover, drug response profiles of paired fresh and frozen samples showed that freezing samples can lead to systematic errors in drug sensitivity scores. While a high correlation between fresh and frozen for the entire drug library was observed, freezing cells had a considerable impact at an individual level, which could influence outcomes in translational studies. Our study highlights conditions where standardization is needed to improve reproducibility, and where validation of data generated from biobanked cohorts may be particularly important.

2.
Mol Cell ; 83(20): 3720-3739.e8, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37591242

ABSTRACT

Fanconi anemia (FA) signaling, a key genomic maintenance pathway, is activated in response to replication stress. Here, we report that phosphorylation of the pivotal pathway protein FANCD2 by CHK1 triggers its FBXL12-dependent proteasomal degradation, facilitating FANCD2 clearance at stalled replication forks. This promotes efficient DNA replication under conditions of CYCLIN E- and drug-induced replication stress. Reconstituting FANCD2-deficient fibroblasts with phosphodegron mutants failed to re-establish fork progression. In the absence of FBXL12, FANCD2 becomes trapped on chromatin, leading to replication stress and excessive DNA damage. In human cancers, FBXL12, CYCLIN E, and FA signaling are positively correlated, and FBXL12 upregulation is linked to reduced survival in patients with high CYCLIN E-expressing breast tumors. Finally, depletion of FBXL12 exacerbated oncogene-induced replication stress and sensitized cancer cells to drug-induced replication stress by WEE1 inhibition. Collectively, our results indicate that FBXL12 constitutes a vulnerability and a potential therapeutic target in CYCLIN E-overexpressing cancers.


Subject(s)
Fanconi Anemia , Neoplasms , Humans , Cell Survival/genetics , Chromatin/genetics , Cyclin E/genetics , Cyclin E/metabolism , DNA Damage , DNA Repair , DNA Replication/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism , Neoplasms/genetics
3.
NPJ Precis Oncol ; 7(1): 32, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36964195

ABSTRACT

Despite some encouraging successes, predicting the therapy response of acute myeloid leukemia (AML) patients remains highly challenging due to tumor heterogeneity. Here we aim to develop and validate MDREAM, a robust ensemble-based prediction model for drug response in AML based on an integration of omics data, including mutations and gene expression, and large-scale drug testing. Briefly, MDREAM is first trained in the BeatAML cohort (n = 278), and then validated in the BeatAML (n = 183) and two external cohorts, including a Swedish AML cohort (n = 45) and a relapsed/refractory acute leukemia cohort (n = 12). The final prediction is based on 122 ensemble models, each corresponding to a drug. A confidence score metric is used to convey the uncertainty of predictions; among predictions with a confidence score >0.75, the validated proportion of good responders is 77%. The Spearman correlations between the predicted and the observed drug response are 0.68 (95% CI: [0.64, 0.68]) in the BeatAML validation set, -0.49 (95% CI: [-0.53, -0.44]) in the Swedish cohort and 0.59 (95% CI: [0.51, 0.67]) in the relapsed/refractory cohort. A web-based implementation of MDREAM is publicly available at https://www.meb.ki.se/shiny/truvu/MDREAM/ .

4.
Nat Protoc ; 17(8): 1832-1867, 2022 08.
Article in English | MEDLINE | ID: mdl-35732783

ABSTRACT

The molecular functions of a protein are defined by its inherent properties in relation to its environment and interaction network. Within a cell, this environment and network are defined by the subcellular location of the protein. Consequently, it is crucial to know the localization of a protein to fully understand its functions. Recently, we have developed a mass spectrometry- (MS) and bioinformatics-based pipeline to generate a proteome-wide resource for protein subcellular localization across multiple human cancer cell lines ( www.subcellbarcode.org ). Here, we present a detailed wet-lab protocol spanning from subcellular fractionation to MS-sample preparation and analysis. A key feature of this protocol is that it includes all generated cell fractions without discarding any material during the fractionation process. We also describe the subsequent quantitative MS-data analysis, machine learning-based classification, differential localization analysis and visualization of the output. For broad applicability, we evaluated the pipeline by using MS data generated by two different peptide pre-fractionation approaches, namely high-resolution isoelectric focusing and high-pH reverse-phase fractionation, as well as direct analysis without pre-fractionation by using long-gradient liquid chromatography-MS. Moreover, an R package covering the dry-lab part of the method was developed and made available through Bioconductor. The method is straightforward and robust, and the entire protocol, from cell harvest to classification output, can be performed within 1-2 weeks. The protocol enables accurate classification of proteins to 15 compartments and 4 neighborhoods, visualization of the output data and differential localization analysis including treatment-induced protein relocalization, condition-dependent localization or cell type-specific localization. The SubCellBarCode package is freely available at https://bioconductor.org/packages/devel/bioc/html/SubCellBarCode.html .


Subject(s)
Proteome , Proteomics , Chromatography, Liquid , Humans , Mass Spectrometry/methods , Proteome/analysis , Proteomics/methods , Workflow
5.
Nat Cancer ; 2(11): 1224-1242, 2021 11.
Article in English | MEDLINE | ID: mdl-34870237

ABSTRACT

Despite major advancements in lung cancer treatment, long-term survival is still rare, and a deeper understanding of molecular phenotypes would allow the identification of specific cancer dependencies and immune evasion mechanisms. Here we performed in-depth mass spectrometry (MS)-based proteogenomic analysis of 141 tumors representing all major histologies of non-small cell lung cancer (NSCLC). We identified six distinct proteome subtypes with striking differences in immune cell composition and subtype-specific expression of immune checkpoints. Unexpectedly, high neoantigen burden was linked to global hypomethylation and complex neoantigens mapped to genomic regions, such as endogenous retroviral elements and introns, in immune-cold subtypes. Further, we linked immune evasion with LAG3 via STK11 mutation-dependent HNF1A activation and FGL1 expression. Finally, we develop a data-independent acquisition MS-based NSCLC subtype classification method, validate it in an independent cohort of 208 NSCLC cases and demonstrate its clinical utility by analyzing an additional cohort of 84 late-stage NSCLC biopsy samples.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Proteogenomics , Carcinoma, Non-Small-Cell Lung/genetics , Fibrinogen/therapeutic use , Genomics/methods , Humans , Immune Evasion/genetics , Lung Neoplasms/genetics
6.
J Extracell Vesicles ; 10(9): e12128, 2021 07.
Article in English | MEDLINE | ID: mdl-34322205

ABSTRACT

Extracellular vesicles (EVs) are increasingly tested as therapeutic vehicles and biomarkers, but still EV subtypes are not fully characterised. To isolate EVs with few co-isolated entities, a combination of methods is needed. However, this is time-consuming and requires large sample volumes, often not feasible in most clinical studies or in studies where small sample volumes are available. Therefore, we compared EVs rendered by five commonly used methods based on different principles from conditioned cell medium and 250 µl or 3 ml plasma, that is, precipitation (ExoQuick ULTRA), membrane affinity (exoEasy Maxi Kit), size-exclusion chromatography (qEVoriginal), iodixanol gradient (OptiPrep), and phosphatidylserine affinity (MagCapture). EVs were characterised by electron microscopy, Nanoparticle Tracking Analysis, Bioanalyzer, flow cytometry, and LC-MS/MS. The different methods yielded samples of different morphology, particle size, and proteomic profile. For the conditioned medium, Izon 35 isolated the highest number of EV proteins followed by exoEasy, which also isolated fewer non-EV proteins. For the plasma samples, exoEasy isolated a high number of EV proteins and few non-EV proteins, while Izon 70 isolated the most EV proteins. We conclude that no method is perfect for all studies, rather, different methods are suited depending on sample type and interest in EV subtype, in addition to sample volume and budget.


Subject(s)
Cell Fractionation/methods , Chemistry Techniques, Analytical/methods , Extracellular Vesicles , Flow Cytometry , Adult , Cell Line , Centrifugation, Density Gradient , Chromatography, Gel , Culture Media, Conditioned , Extracellular Vesicles/ultrastructure , Female , Fractional Precipitation , Humans , Male , Mass Spectrometry , Middle Aged , Proteomics , Triiodobenzoic Acids
7.
Am J Hematol ; 96(5): 580-588, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33625756

ABSTRACT

Molecular classification of acute myeloid leukemia (AML) aids prognostic stratification and clinical management. Our aim in this study is to identify transcriptome-wide mRNAs that are specific to each of the molecular subtypes of AML. We analyzed RNA-sequencing data of 955 AML samples from three cohorts, including the BeatAML project, the Cancer Genome Atlas, and a cohort of Swedish patients to provide a comprehensive transcriptome-wide view of subtype-specific mRNA expression. We identified 729 subtype-specific mRNAs, discovered in the BeatAML project and validated in the other two cohorts. Using unique proteomics data, we also validated the presence of subtype-specific mRNAs at the protein level, yielding a rich collection of potential protein-based biomarkers for the AML community. To enable the exploration of subtype-specific mRNA expression by the broader scientific community, we provide an interactive resource to the public.


Subject(s)
Leukemia, Myeloid, Acute/genetics , RNA, Messenger/biosynthesis , RNA, Neoplasm/biosynthesis , Transcriptome , Biomarkers, Tumor , Genes, Neoplasm , Humans , Leukemia, Myeloid, Acute/classification , Leukemia, Myeloid, Acute/metabolism , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Oncogene Proteins, Fusion/biosynthesis , Oncogene Proteins, Fusion/genetics , Proteome , RNA, Messenger/genetics , RNA, Neoplasm/genetics , RNA-Seq , Retrospective Studies , Sweden
8.
Mol Cell Proteomics ; 19(6): 928-943, 2020 06.
Article in English | MEDLINE | ID: mdl-32234966

ABSTRACT

Drug resistance is a major obstacle to curative cancer therapies, and increased understanding of the molecular events contributing to resistance would enable better prediction of therapy response, as well as contribute to new targets for combination therapy. Here we have analyzed the early molecular response to epidermal growth factor receptor (EGFR) inhibition using RNA sequencing data covering 13,486 genes and mass spectrometry data covering 10,138 proteins. This analysis revealed a massive response to EGFR inhibition already within the first 24 h, including significant regulation of hundreds of genes known to control downstream signaling, such as transcription factors, kinases, phosphatases and ubiquitin E3-ligases. Importantly, this response included upregulation of key genes in multiple oncogenic signaling pathways that promote proliferation and survival, such as ERBB3, FGFR2, JAK3, and BCL6, indicating an early adaptive response to EGFR inhibition. Using a library of more than 500 approved and experimental compounds in a combination therapy screen, we could show that several kinase inhibitors with targets including JAK3 and FGFR2 increased the response to EGFR inhibitors. Further, we investigated the functional impact of BCL6 upregulation in response to EGFR inhibition using siRNA-based silencing of BCL6. Proteomics profiling revealed that BCL6 inhibited transcription of multiple target genes including p53, resulting in reduced apoptosis which implicates BCL6 upregulation as a new EGFR inhibitor treatment escape mechanism. Finally, we demonstrate that combined treatment targeting both EGFR and BCL6 act synergistically in killing lung cancer cells. In conclusion, or data indicates that multiple different adaptive mechanisms may act in concert to blunt the cellular impact of EGFR inhibition, and we suggest BCL6 as a potential target for EGFR inhibitor-based combination therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Proteome/metabolism , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , Signal Transduction/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Benzamides/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Chromatography, Liquid , Drug Synergism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gefitinib/pharmacology , Gene Expression Profiling , Gene Silencing , Humans , Indoles/pharmacology , Lung Neoplasms/genetics , Proteome/drug effects , Proteome/genetics , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Pyrimidines/pharmacology , RNA, Small Interfering , Signal Transduction/genetics , Tandem Mass Spectrometry , Up-Regulation
9.
Mol Cell Proteomics ; 19(6): 1047-1057, 2020 06.
Article in English | MEDLINE | ID: mdl-32205417

ABSTRACT

Quantitative proteomics by mass spectrometry is widely used in biomarker research and basic biology research for investigation of phenotype level cellular events. Despite the wide application, the methodology for statistical analysis of differentially expressed proteins has not been unified. Various methods such as t test, linear model and mixed effect models are used to define changes in proteomics experiments. However, none of these methods consider the specific structure of MS-data. Choices between methods, often originally developed for other types of data, are based on compromises between features such as statistical power, general applicability and user friendliness. Furthermore, whether to include proteins identified with one peptide in statistical analysis of differential protein expression varies between studies. Here we present DEqMS, a robust statistical method developed specifically for differential protein expression analysis in mass spectrometry data. In all data sets investigated there is a clear dependence of variance on the number of PSMs or peptides used for protein quantification. DEqMS takes this feature into account when assessing differential protein expression. This allows for a more accurate data-dependent estimation of protein variance and inclusion of single peptide identifications without increasing false discoveries. The method was tested in several data sets including E. coli proteome spike-in data, using both label-free and TMT-labeled quantification. Compared with previous statistical methods used in quantitative proteomics, DEqMS showed consistently better accuracy in detecting altered protein levels compared with other statistical methods in both label-free and labeled quantitative proteomics data. DEqMS is available as an R package in Bioconductor.


Subject(s)
Peptides/analysis , Proteomics/methods , Tandem Mass Spectrometry/methods , Algorithms , Biomarkers/metabolism , Cell Line , Chromatography, Liquid , ErbB Receptors/antagonists & inhibitors , Escherichia coli/metabolism , Gefitinib/pharmacology , Humans , Isoelectric Focusing , MCF-7 Cells , Proteome/metabolism , Reproducibility of Results
10.
Mol Cell Proteomics ; 19(1): 128-141, 2020 01.
Article in English | MEDLINE | ID: mdl-31699905

ABSTRACT

Synaptic dysfunction is an early pathogenic event in Alzheimer disease (AD) that contributes to network disturbances and cognitive decline. Some synapses are more vulnerable than others, including the synapses of the perforant path, which provides the main excitatory input to the hippocampus. To elucidate the molecular mechanisms underlying the dysfunction of these synapses, we performed an explorative proteomic study of the dentate terminal zone of the perforant path. The outer two-thirds of the molecular layer of the dentate gyrus, where the perforant path synapses are located, was microdissected from five subjects with AD and five controls. The microdissected tissues were dissolved and digested by trypsin. Peptides from each sample were labeled with different isobaric tags, pooled together and pre-fractionated into 72 fractions by high-resolution isoelectric focusing. Each fraction was then analyzed by liquid chromatography-mass spectrometry. We quantified the relative expression levels of 7322 proteins, whereof 724 showed significantly altered levels in AD. Our comprehensive data analysis using enrichment and pathway analyses strongly indicated that presynaptic signaling, such as exocytosis and synaptic vesicle cycle processes, is severely disturbed in this area in AD, whereas postsynaptic proteins remained unchanged. Among the significantly altered proteins, we selected three of the most downregulated synaptic proteins; complexin-1, complexin-2 and synaptogyrin-1, for further validation, using a new cohort consisting of six AD and eight control cases. Semi-quantitative analysis of immunohistochemical staining confirmed decreased levels of complexin-1, complexin-2 and synaptogyrin-1 in the outer two-thirds of the molecular layer of the dentate gyrus in AD. Our in-depth proteomic analysis provides extensive knowledge on the potential molecular mechanism underlying synaptic dysfunction related to AD and supports that presynaptic alterations are more important than postsynaptic changes in early stages of the disease. The specific synaptic proteins identified could potentially be targeted to halt synaptic dysfunction in AD.


Subject(s)
Alzheimer Disease/pathology , Dentate Gyrus/pathology , Perforant Pathway/pathology , Proteins/metabolism , Proteome , Synapses/pathology , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Case-Control Studies , Cohort Studies , Dentate Gyrus/metabolism , Female , Humans , Immunohistochemistry , Male , Middle Aged , Neurons/metabolism , Neurons/pathology , Perforant Pathway/metabolism , Proteomics/methods , Synapses/metabolism , Synaptic Transmission
11.
Oncogene ; 38(43): 6881-6897, 2019 10.
Article in English | MEDLINE | ID: mdl-31406256

ABSTRACT

Patients with small intestinal neuroendocrine tumors (SI-NETs) frequently develop spread disease; however, the underlying molecular mechanisms of disease progression are not known and effective preventive treatment strategies are lacking. Here, protein expression profiling was performed by HiRIEF-LC-MS in 14 primary SI-NETs from patients with and without liver metastases detected at the time of surgery and initial treatment. Among differentially expressed proteins, overexpression of the ubiquitin-like protein NEDD8 was identified in samples from patients with liver metastasis. Further, NEDD8 correlation analysis indicated co-expression with RBX1, a key component in cullin-RING ubiquitin ligases (CRLs). In vitro inhibition of neddylation with the therapeutic agent pevonedistat (MLN4924) resulted in a dramatic decrease of proliferation in SI-NET cell lines. Subsequent mass spectrometry-based proteomics analysis of pevonedistat effects and effects of the proteasome inhibitor bortezomib revealed stabilization of multiple targets of CRLs including p27, an established tumor suppressor in SI-NET. Silencing of NEDD8 and RBX1 using siRNA resulted in a stabilization of p27, suggesting that the cellular levels of NEDD8 and RBX1 affect CRL activity. Inhibition of CRL activity, by either NEDD8/RBX1 silencing or pevonedistat treatment of cells resulted in induction of apoptosis that could be partially rescued by siRNA-based silencing of p27. Differential expression of both p27 and NEDD8 was confirmed in a second cohort of SI-NET using immunohistochemistry. Collectively, these findings suggest a role for CRLs and the ubiquitin proteasome system in suppression of p27 in SI-NET, and inhibition of neddylation as a putative therapeutic strategy in SI-NET.


Subject(s)
Intestinal Neoplasms/drug therapy , Intestinal Neoplasms/metabolism , Intestine, Small/drug effects , Intestine, Small/metabolism , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/metabolism , Aged , Apoptosis/drug effects , Carrier Proteins/metabolism , Cell Line, Tumor , Cyclopentanes/pharmacology , Cyclopentanes/therapeutic use , Female , Humans , Male , Middle Aged , NEDD8 Protein/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Proteomics/methods , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , RNA, Small Interfering/metabolism , Ubiquitins/metabolism
12.
Nat Commun ; 10(1): 1600, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30962452

ABSTRACT

In the preceding decades, molecular characterization has revolutionized breast cancer (BC) research and therapeutic approaches. Presented herein, an unbiased analysis of breast tumor proteomes, inclusive of 9995 proteins quantified across all tumors, for the first time recapitulates BC subtypes. Additionally, poor-prognosis basal-like and luminal B tumors are further subdivided by immune component infiltration, suggesting the current classification is incomplete. Proteome-based networks distinguish functional protein modules for breast tumor groups, with co-expression of EGFR and MET marking ductal carcinoma in situ regions of normal-like tumors and lending to a more accurate classification of this poorly defined subtype. Genes included within prognostic mRNA panels have significantly higher than average mRNA-protein correlations, and gene copy number alterations are dampened at the protein-level; underscoring the value of proteome quantification for prognostication and phenotypic classification. Furthermore, protein products mapping to non-coding genomic regions are identified; highlighting a potential new class of tumor-specific immunotherapeutic targets.


Subject(s)
Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Protein Interaction Maps , Proteome/metabolism , Breast/pathology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/immunology , DNA Copy Number Variations , Datasets as Topic , Female , Gene Expression Profiling , Humans , Oligonucleotide Array Sequence Analysis , Proteogenomics/methods , Proteome/genetics , Proteome/immunology , RNA, Messenger/metabolism
13.
Nat Biotechnol ; 36(6): 521-529, 2018 07.
Article in English | MEDLINE | ID: mdl-29786094

ABSTRACT

No existing method to characterize transcription factor (TF) binding to DNA allows genome-wide measurement of all TF-binding activity in cells. Here we present a massively parallel protein activity assay, active TF identification (ATI), that measures the DNA-binding activity of all TFs in cell or tissue extracts. ATI is based on electrophoretic separation of protein-bound DNA sequences from a highly complex DNA library and subsequent mass-spectrometric identification of the DNA-bound proteins. We applied ATI to four mouse tissues and mouse embryonic stem cells and found that, in a given tissue or cell type, a small set of TFs, which bound to only ∼10 distinct motifs, displayed strong DNA-binding activity. Some of these TFs were found in all cell types, whereas others were specific TFs known to determine cell fate in the analyzed tissue or cell type. We also show that a small number of TFs determined the accessible chromatin landscape of a cell, suggesting that gene regulatory logic may be simpler than previously appreciated.


Subject(s)
Chromatin/metabolism , Transcription Factors/metabolism , Animals , Base Sequence , Binding Sites/genetics , Biotechnology , Cell Differentiation , Chromatin/genetics , DNA/genetics , DNA/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Protein Binding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Species Specificity , Tissue Distribution
14.
Nat Commun ; 9(1): 1852, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29739940

ABSTRACT

In the original version of this Article, extraneous text not belonging to the Article was accidentally appended to the results section. This error has now been corrected in both the PDF and HTML versions of the Article.

15.
Nat Commun ; 9(1): 903, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29500430

ABSTRACT

Proteogenomics enable the discovery of novel peptides (from unannotated genomic protein-coding loci) and single amino acid variant peptides (derived from single-nucleotide polymorphisms and mutations). Increasing the reliability of these identifications is crucial to ensure their usefulness for genome annotation and potential application as neoantigens in cancer immunotherapy. We here present integrated proteogenomics analysis workflow (IPAW), which combines peptide discovery, curation, and validation. IPAW includes the SpectrumAI tool for automated inspection of MS/MS spectra, eliminating false identifications of single-residue substitution peptides. We employ IPAW to analyze two proteomics data sets acquired from A431 cells and five normal human tissues using extended (pH range, 3-10) high-resolution isoelectric focusing (HiRIEF) pre-fractionation and TMT-based peptide quantitation. The IPAW results provide evidence for the translation of pseudogenes, lncRNAs, short ORFs, alternative ORFs, N-terminal extensions, and intronic sequences. Moreover, our quantitative analysis indicates that protein production from certain pseudogenes and lncRNAs is tissue specific.


Subject(s)
Genome, Human , Open Reading Frames/genetics , Proteogenomics/methods , Workflow , Amino Acid Sequence , Amino Acid Substitution , Cell Line , Chromatography, Liquid , Genetic Loci , Humans , Isoelectric Focusing , Mass Spectrometry , Peptides/chemistry , Peptides/genetics , Proteome/metabolism
16.
BMC Cancer ; 17(1): 650, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28915803

ABSTRACT

BACKGROUND: Tartrate-resistant acid phosphatase (TRAP/ACP5), a metalloenzyme that is characteristic for its expression in activated osteoclasts and in macrophages, has recently gained considerable focus as a driver of metastasis and was associated with clinically relevant parameters of cancer progression and cancer aggressiveness. METHODS: MDA-MB-231 breast cancer cells with different TRAP expression levels (overexpression and knockdown) were generated and characterized for protein expression and activity levels. Functional cell experiments, such as proliferation, migration and invasion assays were performed as well as global phosphoproteomic and proteomic analysis was conducted to connect molecular perturbations to the phenotypic changes. RESULTS: We identified an association between metastasis-related properties of TRAP-overexpressing MDA-MB-231 breast cancer cells and a TRAP-dependent regulation of Transforming growth factor (TGFß) pathway proteins and Cluster of differentiation 44 (CD44). Overexpression of TRAP increased anchorage-independent and anchorage-dependent cell growth and proliferation, induced a more elongated cellular morphology and promoted cell migration and invasion. Migration was increased in the presence of the extracellular matrix (ECM) proteins osteopontin and fibronectin and the basement membrane proteins collagen IV and laminin I. TRAP-induced properties were reverted upon shRNA-mediated knockdown of TRAP or treatment with the small molecule TRAP inhibitor 5-PNA. Global phosphoproteomics and proteomics analyses identified possible substrates of TRAP phosphatase activity or signaling intermediates and outlined a TRAP-dependent regulation of proteins involved in cell adhesion and ECM organization. Upregulation of TGFß isoform 2 (TGFß2), TGFß receptor type 1 (TßR1) and Mothers against decapentaplegic homolog 2 (SMAD2), as well as increased intracellular phosphorylation of CD44 were identified upon TRAP perturbation. Functional antibody-mediated blocking and chemical inhibition demonstrated that TRAP-dependent migration and proliferation is regulated via TGFß2/TßR, whereas proliferation beyond basal levels is regulated through CD44. CONCLUSION: Altogether, TRAP promotes metastasis-related cell properties in MDA-MB-231 breast cancer cells via TGFß2/TßR and CD44, thereby identifying a potential signaling mechanism associated to TRAP action in breast cancer cells.


Subject(s)
Hyaluronan Receptors/metabolism , Tartrate-Resistant Acid Phosphatase/physiology , Transforming Growth Factor beta2/physiology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Adhesion , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Shape , Female , Humans , Phosphorylation , Protein Processing, Post-Translational , Proteome/metabolism , Signal Transduction
17.
Sci Rep ; 7(1): 4513, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28674419

ABSTRACT

Protein phosphorylation is involved in the regulation of most eukaryotic cells functions and mass spectrometry-based analysis has made major contributions to our understanding of this regulation. However, low abundance of phosphorylated species presents a major challenge in achieving comprehensive phosphoproteome coverage and robust quantification. In this study, we developed a workflow employing titanium dioxide phospho-enrichment coupled with isobaric labeling by Tandem Mass Tags (TMT) and high-resolution isoelectric focusing (HiRIEF) fractionation to perform in-depth quantitative phosphoproteomics starting with a low sample quantity. To benchmark the workflow, we analyzed HeLa cells upon pervanadate treatment or cell cycle arrest in mitosis. Analyzing 300 µg of peptides per sample, we identified 22,712 phosphorylation sites, of which 19,075 were localized with high confidence and 1,203 are phosphorylated tyrosine residues, representing 6.3% of all detected phospho-sites. HiRIEF fractions with the most acidic isoelectric points are enriched in multiply phosphorylated peptides, which represent 18% of all the phospho-peptides detected in the pH range 2.5-3.7. Cross-referencing with the PhosphoSitePlus database reveals 1,264 phosphorylation sites that have not been previously reported and kinase association analysis suggests that a subset of these may be functional during the mitotic phase.


Subject(s)
Phosphoproteins , Proteome , Proteomics , Chromatography, Liquid , Computational Biology/methods , Humans , Isoelectric Focusing , Molecular Sequence Annotation , Phosphopeptides/metabolism , Phosphoproteins/metabolism , Protein Interaction Mapping , Protein Interaction Maps , Proteomics/methods , Tandem Mass Spectrometry
18.
Mol Cell Proteomics ; 13(6): 1552-62, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24692640

ABSTRACT

Alternative splicing is a pervasive process in eukaryotic organisms. More than 90% of human genes have alternatively spliced products, and aberrant splicing has been shown to be associated with many diseases. Current methods employed in the detection of splice variants include prediction by clustering of expressed sequence tags, exon microarray, and mRNA sequencing, all methods focusing on RNA-level information. There is a lack of tools for analyzing splice variants at the protein level. Here, we present SpliceVista, a tool for splice variant identification and visualization based on mass spectrometry proteomics data. SpliceVista retrieves gene structure and translated sequences from alternative splicing databases and maps MS-identified peptides to splice variants. The visualization module plots the exon composition of each splice variant and aligns identified peptides with transcript positions. If quantitative mass spectrometry data are used, SpliceVista plots the quantitative patterns for each peptide and provides users with the option to cluster peptides based on their quantitative patterns. SpliceVista can identify splice-variant-specific peptides, providing the possibility for variant-specific analysis. The tool was tested on two experimental datasets (PXD000065 and PXD000134). In A431 cells treated with gefitinib, 2983 splice-variant-specific peptides corresponding to 939 splice variants were identified. Through comparison of splice-variant-centric, protein-centric, and gene-centric quantification, several genes (e.g. EIF4H) were found to have differentially regulated splice variants after gefitinib treatment. The same discrepancy between protein-centric and splice-centric quantification was detected in the other dataset, in which induced pluripotent stem cells were compared with parental fibroblast and human embryotic stem cells. In addition, SpliceVista can be used to visualize novel splice variants inferred from peptide-level evidence. In summary, SpliceVista enables visualization, detection, and differential quantification of protein splice variants that are often missed in current proteomics pipelines.


Subject(s)
Alternative Splicing/genetics , Protein Isoforms/genetics , Proteomics , Software , Databases, Protein , Expressed Sequence Tags , Humans , Mass Spectrometry , Oligonucleotide Array Sequence Analysis
19.
Nat Methods ; 11(1): 59-62, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24240322

ABSTRACT

We present a liquid chromatography-mass spectrometry (LC-MS)-based method permitting unbiased (gene prediction-independent) genome-wide discovery of protein-coding loci in higher eukaryotes. Using high-resolution isoelectric focusing (HiRIEF) at the peptide level in the 3.7-5.0 pH range and accurate peptide isoelectric point (pI) prediction, we probed the six-reading-frame translation of the human and mouse genomes and identified 98 and 52 previously undiscovered protein-coding loci, respectively. The method also enabled deep proteome coverage, identifying 13,078 human and 10,637 mouse proteins.


Subject(s)
Chromatography, Liquid/methods , Genomics/methods , Mass Spectrometry/methods , Proteome/analysis , Proteomics/methods , Animals , Arabidopsis/genetics , Computational Biology/methods , Exons , Humans , Hydrogen-Ion Concentration , Isoelectric Focusing/methods , Mice , Models, Statistical , Open Reading Frames , Peptides/chemistry , Protein Biosynthesis , Proteins/chemistry
20.
Thyroid ; 20(10): 1067-76, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20629554

ABSTRACT

BACKGROUND: The accurate diagnosis of thyroid tumors is challenging. Proteomics has emerged as a promising approach for the discovery of molecular diagnostic markers as a potential complement to routine diagnostics. METHODS: Protein fractions from 29 frozen thyroid tumor tissue samples (10 papillary carcinomas, 9 follicular carcinomas, and 10 follicular adenomas) as well as from normal thyroid tissue were analyzed by surface enhanced laser desorption/ionization time-of-flight mass spectrometry followed by validation by Western blotting and immunohistochemistry. RESULTS: A Ca2+ binding protein belonging to the S100 family, S100A6, was differentially expressed between papillary and follicular thyroid tumors. Moreover, two posttranslationally modified forms of S100A6 were observed and verified by liquid chromatography-coupled tandem mass spectrometry. Validation by Western blotting displayed a significantly higher expression of S100A6 in papillary thyroid carcinoma (PTC) in comparison with the other tumor groups or normal tissue (p < 0.05). Immunohistochemical analysis on 98 tumors showed that PTC cases had a significantly stronger cytosolic staining and a larger proportion of stained nuclei than follicular tumors. BRAF gene mutation was not significantly associated with S100A6 protein levels. CONCLUSION: This study supports a role of S100A6 in thyroid tumorigenesis and as a potential aid in the discrimination between follicular thyroid tumors and PTC.


Subject(s)
Carcinoma, Papillary/genetics , Cell Cycle Proteins/genetics , S100 Proteins/genetics , Thyroid Neoplasms/genetics , Adenocarcinoma, Follicular/genetics , Carcinoma, Papillary/diagnosis , Cell Cycle Proteins/biosynthesis , Humans , Protein Processing, Post-Translational , Proteomics , S100 Calcium Binding Protein A6 , S100 Proteins/biosynthesis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Thyroid Gland/radiation effects , Thyroid Neoplasms/diagnosis , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...