Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 11(9)2021 09 07.
Article in English | MEDLINE | ID: mdl-34572535

ABSTRACT

Calcineurin (CaN) is present in all eukaryotic cells, including intracellular trypanosomatid parasites such as Trypanosoma cruzi (Tc) and Leishmania spp. (Lspp). In this study, we performed an in silico analysis of the CaN subunits, comparing them with the human (Hs) and looking their structure, post-translational mechanisms, subcellular distribution, interactors, and secretion potential. The differences in the structure of the domains suggest the existence of regulatory mechanisms and differential activity between these protozoa. Regulatory subunits are partially conserved, showing differences in their Ca2+-binding domains and myristoylation potential compared with human CaN. The subcellular distribution reveals that the catalytic subunits TcCaNA1, TcCaNA2, LsppCaNA1, LsppCaNA1_var, and LsppCaNA2 associate preferentially with the plasma membrane compared with the cytoplasmic location of HsCaNAα. For regulatory subunits, HsCaNB-1 and LsppCaNB associate preferentially with the nucleus and cytoplasm, and TcCaNB with chloroplast and cytoplasm. Calpain cleavage sites on CaNA suggest differential processing. CaNA and CaNB of these trypanosomatids have the potential to be secreted and could play a role in remote communication. Therefore, this background can be used to develop new drugs for protozoan pathogens that cause neglected disease.


Subject(s)
Calcineurin/metabolism , Computer Simulation , Intracellular Space/parasitology , Leishmania/pathogenicity , Protozoan Proteins/metabolism , Trypanosoma cruzi/pathogenicity , Amino Acid Sequence , Calcineurin/chemistry , Calpain/metabolism , Conserved Sequence , Humans , Immunophilins/metabolism , Immunosuppressive Agents/pharmacology , Myristic Acid/metabolism , Phosphorylation , Protein Domains , Protein Subunits/metabolism , Protozoan Proteins/chemistry , Subcellular Fractions/metabolism
2.
Molecules ; 25(23)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33291367

ABSTRACT

The dioctadecyldimethylammonium bromide (DODAB) is a double-chained cationic lipid with potent bactericide and fungistatic activities; however, its toxicity on protozoan parasites is still unknown. Here, we show the antileishmanial activity of DODAB nano-sized cationic bilayer fragments on stationary-phase promastigotes and amastigotes of Leishmania amazonensis, the causative agent of cutaneous leishmaniasis. Upon treatment with DODAB, we analyzed the parasite surface zeta-potential, parasite viability, cellular structural modifications, and intracellular proliferation. The DODAB cytotoxic effect was dose-dependent, with a median effective concentration (EC50) of 25 µM for both life-cycle stages, comparable to the reported data for bacteria and fungi. The treatment with DODAB changed the membrane zeta-potential from negative to positive, compromised the parasite's morphology, affected the cell size regulation, caused a loss of intracellular organelles, and probably dysregulated the plasma membrane permeability without membrane disruption. Moreover, the parasites that survived after treatment induced small parasitophorous vacuoles and failed to proliferate inside macrophages. In conclusion, DODAB displayed antileishmanial activity, and it remains to be elucidated how DODAB acts on the protozoan membrane. Understanding this mechanism can provide insights into the development of new parasite-control strategies.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Cations/chemistry , Leishmania mexicana/drug effects , Nanoparticles/chemistry , Quaternary Ammonium Compounds/chemistry , Animals , Leishmaniasis, Cutaneous/drug therapy , Life Cycle Stages/drug effects , Lipids/chemistry , Macrophages/drug effects , Mice , Mice, Inbred C57BL
3.
BMC Oral Health ; 19(1): 207, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31484557

ABSTRACT

BACKGROUND: The oral flagellated protozoan Trichomonas tenax has been associated with patients with periodontal disease. However, no recent studies have been conducted on the prevalence of T. tenax in Chile. The aim of this study was to determine the presence of T. tenax in patients with periodontal disease, admitted to the Dental Clinic of the University of Antofagasta, Chile, through Polymerase Chain Reaction (PCR) amplification of the beta-tubulin gene. METHODS: An observational, cross-sectional study was conducted on 50 patients diagnosed with periodontal disease, 20 of them with gingivitis and 30 with periodontitis. T. tenax was identified by PCR amplification of the beta-tubulin gene. Associations between the protozoan and periodontal disease or the presence of risk factors to establish T. tenax infection were determined using the chi-square test and binary logistic regression analysis. RESULTS: T. tenax was present in 28 out of 50 (56%) of patients with periodontal disease, and was more prevalent when associated with periodontitis (21 out of 30; 70%) than dental plaque-induced gingivitis (7 out of 20; 35%). Non-statistically-significant associations were observed between the presence of T. tenax and age, gender, smoking habit or diabetes. Statistically significant associations were observed between the presence of T. tenax and periodontal disease, and between T. tenax and the Periodontal Screening and Recording (PSR) index. CONCLUSION: T. tenax showed a high presence in patients with progressive states of periodontal diseases. Consequently, T. tenax detection is strongly recommended in patients with periodontal disease diagnosis and with a PSR index greater than 3.


Subject(s)
Gingivitis/microbiology , Periodontal Diseases/microbiology , Trichomonas Infections/diagnosis , Trichomonas/isolation & purification , Tubulin/genetics , Adult , Aged , Aged, 80 and over , Chile/epidemiology , Cross-Sectional Studies , Dental Clinics , Female , Gene Amplification , Gingivitis/diagnosis , Gingivitis/epidemiology , Humans , Male , Middle Aged , Periodontal Diseases/diagnosis , Periodontal Diseases/epidemiology , Polymerase Chain Reaction , Prevalence , Universities
4.
Mol Neurobiol ; 56(7): 4620-4638, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30374940

ABSTRACT

Neurons are highly polarized cells displaying an elaborate architectural morphology. The design of their dendritic arborization and the distribution of their synapses contribute importantly to information processing in the brain. The growth and complexity of dendritic arbors are driven by the formation of synapses along their lengths. Synaptogenesis is augmented by the secretion of factors, like BDNF, Reelin, BMPs, or Wnts. Exo70 is a component of the exocyst complex, a protein complex that guides membrane addition and polarized exocytosis. While it has been linked to cytokinesis and the establishment of cell polarity, its role in synaptogenesis is poorly understood. In this report, we show that Exo70 plays a role in the arborization of dendrites and the development of synaptic connections between cultured hippocampal neurons. Specifically, while the overexpression of Exo70 increases dendritic arborization, synapse number, and spine density, the inhibition of Exo70 expression reduces secondary and tertiary dendrite formation and lowers synapse density. Moreover, increasing Exo70 expression augmented synaptic vesicle recycling as evaluated by FM4-64 dye uptake and the inverse was observed with downregulation of endogenous Exo70. Monitoring the formation of dendritic spines by super-resolution microscopy, we also observed that mRFP-Exo70 accumulates at the tip of EGFP-ß-actin-positive filopodia. Together, these results suggest that Exo70 is essentially involved in the formation of synapses and neuronal dendritic morphology.


Subject(s)
Dendritic Spines/metabolism , Hippocampus/metabolism , Synapses/metabolism , Vesicular Transport Proteins/metabolism , Animals , Cells, Cultured , Down-Regulation/genetics , HEK293 Cells , Humans , Lentivirus/metabolism , Models, Biological , Phenotype , Rats, Sprague-Dawley , Reelin Protein
5.
Toxins (Basel) ; 9(4)2017 04 05.
Article in English | MEDLINE | ID: mdl-28379166

ABSTRACT

Cutaneous loxoscelism envenomation by Loxosceles spiders is characterized by the development of a dermonecrotic lesion, strong inflammatory response, the production of pro-inflammatory mediators, and leukocyte migration to the bite site. The role of phospholipase D (PLD) from Loxosceles in the recruitment and migration of monocytes to the envenomation site has not yet been described. This study reports on the expression and production profiles of cytokines and chemokines in human skin fibroblasts treated with catalytically active and inactive recombinant PLDs from Loxosceles laeta (rLlPLD) and lipid inflammatory mediators ceramide 1-phosphate (C1P) and lysophosphatidic acid (LPA), and the evaluation of their roles in monocyte migration. Recombinant rLlPLD1 (active) and rLlPLD2 (inactive) isoforms induce interleukin (IL)-6, IL-8, CXCL1/GRO-α, and CCL2/monocyte chemoattractant protein-1 (MCP-1) expression and secretion in fibroblasts. Meanwhile, C1P and LPA only exhibited a minor effect on the expression and secretion of these cytokines and chemokines. Moreover, neutralization of both enzymes with anti-rLlPLD1 antibodies completely inhibited the secretion of these cytokines and chemokines. Importantly, conditioned media from fibroblasts, treated with rLlPLDs, stimulated the transmigration of THP-1 monocytes. Our data demonstrate the direct role of PLDs in chemotactic mediator synthesis for monocytes in human skin fibroblasts and indicate that inflammatory processes play an important role during loxoscelism.


Subject(s)
Arthropod Proteins/pharmacology , Fibroblasts/drug effects , Monocytes/drug effects , Phospholipase D/pharmacology , Spider Venoms/enzymology , Animals , Cell Line , Cell Movement/drug effects , Ceramides/pharmacology , Cytokines/genetics , Cytokines/metabolism , Fibroblasts/metabolism , Humans , Lysophospholipids/pharmacology , Monocytes/physiology , RNA, Messenger/metabolism , Recombinant Proteins/pharmacology , Skin/cytology , Spiders
6.
PLoS Negl Trop Dis ; 8(1): e2676, 2014.
Article in English | MEDLINE | ID: mdl-24498455

ABSTRACT

Parasitological cure for Chagas disease is considered extremely difficult to achieve because of the lack of effective chemotherapeutic agents against Trypanosoma cruzi at different stages of infection. There are currently only two drugs available. These have several limitations and can produce serious side effects. Thus, new chemotherapeutic targets are much sought after. Among T. cruzi components involved in key processes such as parasite proliferation and host cell invasion, Ca(2+)-dependent molecules play an important role. Calcineurin (CaN) is one such molecule. In this study, we cloned a new isoform of the gene coding for CL strain catalytic subunit CaNA (TcCaNA2) and characterized it molecularly and functionally. There is one copy of the TcCaNA2 gene per haploid genome. It is constitutively transcribed in all T. cruzi developmental forms and is localized predominantly in the cytosol. In the parasite, TcCaNA2 is associated with CaNB. The recombinant protein TcCaNA2 has phosphatase activity that is enhanced by Mn(2+)/Ni(2+). The participation of TcCaNA2 in target cell invasion by metacyclic trypomastigotes was also demonstrated. Metacyclic forms with reduced TcCaNA2 expression following treatment with morpholino antisense oligonucleotides targeted to TcCaNA2 invaded HeLa cells at a lower rate than control parasites treated with morpholino sense oligonucleotides. Similarly, the decreased expression of TcCaNA2 following treatment with antisense morpholino oligonucleotides partially affected the replication of epimastigotes, although to a lesser extent than the decrease in expression following treatment with calcineurin inhibitors. Our findings suggest that the calcineurin activities of TcCaNA2/CaNB and TcCaNA/CaNB, which have distinct cellular localizations (the cytoplasm and the nucleus, respectively), may play a critical role at different stages of T. cruzi development, the former in host cell invasion and the latter in parasite multiplication.


Subject(s)
Calcineurin/genetics , Calcineurin/metabolism , Trypanosoma cruzi/metabolism , Antigens, Protozoan , Catalytic Domain/genetics , Cell Proliferation , Cloning, Molecular , Endocytosis , Enzyme Activators/metabolism , HeLa Cells , Humans , Manganese/metabolism , Molecular Sequence Data , Nickel/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Protein Multimerization , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Sequence Analysis, DNA , Trypanosoma cruzi/genetics
7.
Int J Parasitol ; 42(8): 715-27, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22713760

ABSTRACT

In this work, evidence for a critical role of Trichomonas vaginalis protein phosphatase 1 gamma (TvPP1γ) in proliferation and attachment of the parasite to the mammalian cell is provided. Firstly, proliferation and attachment of T. vaginalis parasites to HeLa cells was blocked by calyculin A (CA), a potent PP1 inhibitor. Secondly, it was demonstrated that the enzyme activity of native and recombinant TvPP1γ proteins was inhibited by CA. Thirdly, reverse genetic studies confirmed that antisense oligonucleotides targeted to PP1γ but not PP1α or ß inhibited proliferation and attachment of trichomonads CA-treated parasites underwent cytoskeletal modifications, including a lack of axostyle typical labelling, suggesting that cytoskeletal phosphorylation could be regulated by a CA-sensitive phosphatase where the role of PP1γ could not be ruled out. Analysis of subcellular distribution of TvPP1γ by cell fractionation and electron microscopy demonstrated the association between TvPP1γ and the cytoskeleton. The expression of adhesins, AP120 and AP65, at the cell surface was also inhibited by CA. The concomitant inhibition of expression of adhesins and changes in the cytoskeleton in CA-treated parasites suggest a specific role for PP1γ -dependent dephosphorylation in the early stages of the host-parasite interaction. Molecular modelling of TvPP1γ showed the conservation of residues critical for maintaining proper folding into the gross structure common to PP1 proteins. Taken together, these results suggest that TvPP1γ could be considered a potential novel drug target for treatment of trichomoniasis.


Subject(s)
Cell Proliferation , Protein Phosphatase 1/metabolism , Protozoan Proteins/metabolism , Trichomonas Vaginitis/parasitology , Trichomonas vaginalis/enzymology , Amino Acid Motifs , Amino Acid Sequence , Cell Adhesion , Epithelial Cells/parasitology , Female , HeLa Cells , Host-Parasite Interactions , Humans , Molecular Sequence Data , Protein Phosphatase 1/chemistry , Protein Phosphatase 1/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Sequence Alignment , Trichomonas vaginalis/chemistry , Trichomonas vaginalis/genetics , Trichomonas vaginalis/physiology
8.
Microbes Infect ; 10(8): 892-900, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18657458

ABSTRACT

During Trypanosoma cruzi cell invasion, signal transduction pathways are triggered in parasite and host cells, leading to a rise in intracellular Ca2+ concentration. We posed the question whether calcineurin (CaN), in particular the functional regulatory subunit CaNB, a Ca2+-binding EF-hand protein, was expressed in T. cruzi and whether it played a role in cell invasion. Here we report the cloning and characterization of CL strain CaNB gene, as well as the participation of CaNB in cell invasion. Treatment of metacyclic trypomastigotes (MT) or tissue-culture trypomastigotes (TCT) with the CaN inhibitors cyclosporin or cypermethrin strongly inhibited (62-64%) their entry into HeLa cells. In assays using anti-phospho-serine/threonine antibodies, a few proteins of MT were found to be dephosphorylated in a manner inhibitable by cyclosporin upon exposure to HeLa cell extract. The phosphatase activity of CaN was detected by a biochemical approach in both MT and TCT. Treatment of parasites with antisense phosphorothioate oligonucleotides directed to TcCaNB-CL, which reduced the expression of TcCaNB and affected TcCaN activity, resulted in approximately 50% inhibition of HeLa cell entry by MT or TCT. Given that TcCaNB-CL may play a key role in cell invasion and differs considerably in its primary structure from the human CaNB, it might be considered as a potential chemotherapeutic target.


Subject(s)
Calcineurin/physiology , Protozoan Proteins/physiology , Trypanosoma cruzi/pathogenicity , Virulence Factors/physiology , Amino Acid Sequence , Animals , Calcineurin/biosynthesis , Calcineurin/genetics , Calcineurin Inhibitors , Cloning, Molecular , Cyclosporine/pharmacology , Enzyme Inhibitors/pharmacology , Gene Silencing , HeLa Cells , Humans , Molecular Sequence Data , Oligonucleotides, Antisense , Phosphoprotein Phosphatases/antagonists & inhibitors , Phosphoprotein Phosphatases/biosynthesis , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/physiology , Phylogeny , Protozoan Proteins/biosynthesis , Pyrethrins , Sequence Alignment , Virulence Factors/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...