Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632858

ABSTRACT

Rock hind (Epinephelus adscensionis) and spotted moray (Gymnothorax moringa) are ubiquitous mesopredators that co-occur in the nearshore waters of Ascension Island in the South Atlantic Ocean, where they have significant cultural and subsistence value, but management of their non-commercial take is limited. This isolated volcanic system is home to high biomass and low species diversity, which poses two key questions: How can two mesopredators that perform similar ecological roles coexist? And if these two species are so ecologically similar, can they be managed using the same approach? Here, we combined acoustic telemetry, stomach content analysis, and stable isotope analysis to (i) explore space use and diet choices within and between these two species and (ii) to assess appropriate species-specific management options. Although rock hind had high residency and small calculated home ranges (0.0001-0.3114 km2), spotted moray exhibited shorter periods of residency (<3 months) before exiting the array. Vertical space use differed significantly across the 20-month tracking period, with individual differences in vertical space observed for both species. A hierarchical generalized additive model using 12-h averaged depth data identified that rock hind occurred lower in the water column than spotted moray, with both species occupying moderately deeper depths at night versus day (+1.6% relative depth). Spotted moray depth was also significantly predicted by lunar illumination. Aggregating samples by species and tissue type, Bayesian ecological niche modeling identified a 53.14%-54.15% and 78.02%-97.08% probability of niche overlap from fin clip and white muscle, respectively, whereas limited stomach content data indicated a preference for piscivorous prey. Variability in niche breadth between years suggests these species may exploit a range of prey items over time. These findings indicate that although these two species perform a similar ecological role by feeding on prey occupying the same trophic levels, subtle differences in movement behaviors between them suggest a one-rule-fits-all management approach is not likely the most effective option.

2.
Oecologia ; 202(3): 601-616, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37488308

ABSTRACT

Within and among species variation in trophic and habitat shifts with body size can indicate the potential adaptive capacity of species to ecosystem change. In Arctic coastal ecosystems, which experience dramatic seasonal shifts and are undergoing rapid change, quantifying the trophic flexibility of coastal fishes with different migratory tactics has received limited attention. We examined the relationships among body length and condition (Fulton's K, phase angle from Bioelectrical Impedance Analysis) with trophic and habitat shifts (differences in δ15N and δ13C between blood tissues with different turnover rates) of two abundant and culturally important species, anadromous Arctic char (Salvelinus alpinus, n = 38) and sedentary Greenland cod (Gadus ogac, n = 65) during summer in coastal marine waters near Ulukhaktok, Northwest Territories, Canada. Habitat shifts (δ13C) increased with length (i.e., pelagic to benthic-littoral) and crossed-equilibrium (zero) at mid-sizes for both species. Seasonal trophic shifts (δ15N) were generally positive (i.e., increasing trophic level) for Arctic char and negative for Greenland cod. As hypothesised, intra-individual variation in size-based trophic shifts (δ15N-length residuals) increased with length for Arctic char. However, there were no trends with length in Greenland cod. Our findings highlight the importance of flexibility through ontogeny and mobility for Arctic char, whereas Greenland cod were generalist to localized prey and habitat across all sizes. The significant effect of body condition (phase angle) on size-based trophic shifts in Arctic char, and size-based habitat shifts in Greenland cod, highlight the potential trade-offs of contrasting life history strategies and capacity for ontogenetic niche plasticity.


Subject(s)
Ecosystem , Nutritional Status , Animals , Arctic Regions , Canada , Trout
3.
Ecol Lett ; 21(2): 287-295, 2018 02.
Article in English | MEDLINE | ID: mdl-29243313

ABSTRACT

Organisms can modify their surrounding environment, but whether these changes are large enough to feed back and alter their evolutionary trajectories is not well understood, particularly in wild populations. Here we show that nutrient pulses from decomposing Atlantic salmon (Salmo salar) parents alter selection pressures on their offspring with important consequences for their phenotypic and genetic diversity. We found a strong survival advantage to larger eggs and faster juvenile metabolic rates in streams lacking carcasses but not in streams containing this parental nutrient input. Differences in selection intensities led to significant phenotypic divergence in these two traits among stream types. Stronger selection in streams with low parental nutrient input also decreased the number of surviving families compared to streams with high parental nutrient levels. Observed effects of parent-derived nutrients on selection pressures provide experimental evidence for key components of eco-evolutionary feedbacks in wild populations.


Subject(s)
Biological Evolution , Nutrients , Salmon , Animals , Phenotype , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...