Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE J Biomed Health Inform ; 23(6): 2446-2454, 2019 11.
Article in English | MEDLINE | ID: mdl-30703049

ABSTRACT

Developing a tool that identifies emotions based on their effect on cardiac activity may have a potential impact on clinical practice, since it may help in the diagnosing of psycho-neural illnesses. In this study, a method based on the analysis of heart rate variability (HRV) guided by respiration is proposed. The method was based on redefining the high frequency (HF) band, not only to be centered at the respiratory frequency, but also to have a bandwidth dependent on the respiratory spectrum. The method was first tested using simulated HRV signals, yielding the minimum estimation errors as compared to classic and respiratory frequency centered at HF band based definitions, independently of the values of the sympathovagal ratio. Then, the proposed method was applied to discriminate emotions in a database of video-induced elicitation. Five emotional states, relax, joy, fear, sadness, and anger, were considered. The maximum correlation between HRV and respiration spectra discriminated joy versus relax, joy versus each negative valence emotion, and fear versus sadness with p-value ≤ 0.05 and AUC ≥ 0.70. Based on these results, human emotion characterization may be improved by adding respiratory information to HRV analysis.


Subject(s)
Emotions/classification , Heart Rate/physiology , Respiratory Rate/physiology , Signal Processing, Computer-Assisted , Adolescent , Adult , Autonomic Nervous System/physiology , Electrocardiography/methods , Emotions/physiology , Female , Humans , Male , Middle Aged , Young Adult
2.
IEEE Trans Cybern ; 47(7): 1769-1780, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28113739

ABSTRACT

This paper presents a novel activity class representation using a single sequence for training. The contribution of this representation lays on the ability to train an one-shot learning recognition system, useful in new scenarios where capturing and labeling sequences is expensive or impractical. The method uses a universal background model of local descriptors obtained from source databases available on-line and adapts it to a new sequence in the target scenario through a maximum a posteriori adaptation. Each activity sample is encoded in a sequence of normalized bag of features and modeled by a new hidden Markov model formulation, where the expectation-maximization algorithm for training is modified to deal with observations consisting in vectors in a unit simplex. Extensive experiments in recognition have been performed using one-shot learning over the public datasets Weizmann, KTH, and IXMAS. These experiments demonstrate the discriminative properties of the representation and the validity of application in recognition systems, achieving state-of-the-art results.

3.
IEEE Trans Cybern ; 44(6): 894-909, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23955796

ABSTRACT

Gait recognition can potentially provide a noninvasive and effective biometric authentication from a distance. However, the performance of gait recognition systems will suffer in real surveillance scenarios with multiple interacting individuals and where the camera is usually placed at a significant angle and distance from the floor. We present a methodology for view-invariant monocular 3-D human pose tracking in man-made environments in which we assume that observed people move on a known ground plane. First, we model 3-D body poses and camera viewpoints with a low dimensional manifold and learn a generative model of the silhouette from this manifold to a reduced set of training views. During the online stage, 3-D body poses are tracked using recursive Bayesian sampling conducted jointly over the scene's ground plane and the pose-viewpoint manifold. For each sample, the homography that relates the corresponding training plane to the image points is calculated using the dominant 3-D directions of the scene, the sampled location on the ground plane and the sampled camera view. Each regressed silhouette shape is projected using this homographic transformation and is matched in the image to estimate its likelihood. Our framework is able to track 3-D human walking poses in a 3-D environment exploring only a 4-D state space with success. In our experimental evaluation, we demonstrate the significant improvements of the homographic alignment over a commonly used similarity transformation and provide quantitative pose tracking results for the monocular sequences with a high perspective effect from the CAVIAR dataset.


Subject(s)
Gait/physiology , Imaging, Three-Dimensional/methods , Pattern Recognition, Automated/methods , Algorithms , Bayes Theorem , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...