Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Crystallogr ; 55(Pt 4): 737-750, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35974740

ABSTRACT

A feed-forward neural-network-based model is presented to index, in real time, the diffraction spots recorded during synchrotron X-ray Laue microdiffraction experiments. Data dimensionality reduction is applied to extract physical 1D features from the 2D X-ray diffraction Laue images, thereby making it possible to train a neural network on the fly for any crystal system. The capabilities of the LaueNN model are illustrated through three examples: a two-phase nano-structure, a textured high-symmetry specimen deformed in situ and a polycrystalline low-symmetry material. This work provides a novel way to efficiently index Laue spots in simple and complex recorded images in <1 s, thereby opening up avenues for the realization of real-time analysis of synchrotron Laue diffraction data.

2.
Article in English | MEDLINE | ID: mdl-24675601

ABSTRACT

A single-crystal X-ray diffraction structure analysis of decagonal Zn-Mg-Dy, a Frank-Kasper-type quasicrystal, was performed using the higher-dimensional approach. For this first Frank-Kasper (F-K) decagonal quasicrystal studied so far, significant differences to the decagonal Al-TM-based (TM: transition metal) phases were found. A new type of twofold occupation domain is located on certain edge centers of the five-dimensional unit cell. The structure can be described in terms of a two-cluster model based on a decagonal cluster (∼ 23 Šdiameter) arranged on the vertices of a pentagon-Penrose tiling (PPT) and a star-like cluster covering the remaining space. This model is used for the five-dimensional refinements, which converged to an R value of 0.126. The arrangement of clusters is significantly disordered as indicated by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). In order to check the structure and stability at higher temperatures, in-situ high-temperature (HT) single-crystal X-ray diffraction experiments were conducted at 598 and 648 K (i.e. slightly below the decomposition temperature). The structure does not change significantly, however, the best quasiperiodic order is found at 598 K. The implication of these results on the stabilization mechanism of quasicrystals is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...