Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35807481

ABSTRACT

A series of pyrimidine conjugates containing a fragment of racemic 7,8-difluoro-3,4-dihydro-3-methyl-2H-[1,4]benzoxazine and its (S)-enantiomer attached via a 6-aminohexanoyl fragment were synthesized by the reaction of nucleophilic substitution of chlorine in various chloropyrimidines. The structures of the synthesized compounds were confirmed by 1H, 19F, and 13C NMR spectral data. Enantiomeric purity of optically active derivatives was confirmed by chiral HPLC. Antiviral evaluation of the synthesized compounds has shown that the replacement of purine with a pyrimidine fragment leads to a decrease in the anti-herpesvirus activity compared to the lead compound, purine conjugate. The studied compounds did not exhibit significant activity against influenza A (H1N1) virus.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Antiviral Agents/chemistry , Benzoxazines/chemistry , Purines , Pyrimidines/pharmacology
2.
Molecules ; 26(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924393

ABSTRACT

To date, the 'one bug-one drug' approach to antiviral drug development cannot effectively respond to the constant threat posed by an increasing diversity of viruses causing outbreaks of viral infections that turn out to be pathogenic for humans. Evidently, there is an urgent need for new strategies to develop efficient antiviral agents with broad-spectrum activities. In this paper, we identified camphene derivatives that showed broad antiviral activities in vitro against a panel of enveloped pathogenic viruses, including influenza virus A/PR/8/34 (H1N1), Ebola virus (EBOV), and the Hantaan virus. The lead-compound 2a, with pyrrolidine cycle in its structure, displayed antiviral activity against influenza virus (IC50 = 45.3 µM), Ebola pseudotype viruses (IC50 = 0.12 µM), and authentic EBOV (IC50 = 18.3 µM), as well as against pseudoviruses with Hantaan virus Gn-Gc glycoprotein (IC50 = 9.1 µM). The results of antiviral activity studies using pseudotype viruses and molecular modeling suggest that surface proteins of the viruses required for the fusion process between viral and cellular membranes are the likely target of compound 2a. The key structural fragments responsible for efficient binding are the bicyclic natural framework and the nitrogen atom. These data encourage us to conduct further investigations using bicyclic monoterpenoids as a scaffold for the rational design of membrane-fusion targeting inhibitors.


Subject(s)
Antiviral Agents/chemical synthesis , Bicyclic Monoterpenes/chemistry , Antiviral Agents/chemistry , Ebolavirus/drug effects , Magnetic Resonance Spectroscopy , Models, Molecular , Orthomyxoviridae/drug effects , Protein Structure, Secondary , Pyrrolidines/chemistry
3.
RSC Adv ; 11(56): 35174-35181, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-35493195

ABSTRACT

In the direct C-H arylation with arylhalogenides in the presence of Pd(OAc)2, trifluoromethyl-containing antipyrine reacts very slowly and incompletely owing to the low nucleophilicity of its C4 center. However, it was effective in modifying polyfluoroalkyl-substituted 4-bromo- and 4-iodo antipyrines by the Suzuki and Sonogashira reactions. It was established that using Pd2(dba)3 as catalyst and XPhos as phosphine ligand was the optimal catalytic system for the synthesis of 4-aryl- and 4-phenylethynyl-3-polyfluoroalkyl-antipyrines. Moreover, iodo-derivatives as the initial reagents were found to be more advantageous compared to bromo-containing analogs. It was found that 4-phenylethynyl-5-CF3-antipyrine has a moderate activity against the influenza virus A/Puerto Rico/8/34 (H1N1) and 4-iodo-5-CF3-antipyrine reveals a weak activity against the vaccine virus (strain Copenhagen) and bovine diarrhea virus (strain VC-1).

4.
Bioorg Med Chem Lett ; 27(13): 2920-2925, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28501512

ABSTRACT

Compounds simultaneously carrying the monoterpene and coumarin moieties have been tested for cytotoxicity and inhibition of activity against influenza virus A/California/07/09 (H1N1)pdm09. The structure of substituents in the coumarin framework, as well as the structure and the absolute configuration of the monoterpenoid moiety, are shown to significantly influence the anti-influenza activity and cytotoxicity of the compounds under study. The compounds with a bicyclic pinane framework exhibit the highest selectivity indices (the ratios between the cytotoxicity and the active dose). The derivative of (-)-myrtenol 15c, which is characterized by promising activity, low cytotoxicity, and synthetic accessibility, has the greatest potential among this group of compounds. It exhibited the highest activity when added to the infected cell culture at early stages of viral reproduction.


Subject(s)
Antiviral Agents/pharmacology , Coumarins/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Madin Darby Canine Kidney Cells/drug effects , Monoterpenes/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Death/drug effects , Cells, Cultured , Coumarins/chemical synthesis , Coumarins/chemistry , Dogs , Dose-Response Relationship, Drug , Madin Darby Canine Kidney Cells/virology , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Monoterpenes/chemistry , Structure-Activity Relationship , Virus Replication/drug effects
5.
Bioorg Med Chem Lett ; 27(10): 2181-2184, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28366530

ABSTRACT

A series of seventeen tetrazole derivatives of 1,7,7-trimethyl-[2.2.1]bicycloheptane were synthesized using click chemistry methodology and characterized by spectral data. Studies of cytotoxicity and in vitro antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells of the compounds obtained were performed. The structure-activity relationship analysis suggests that to possess virus-inhibiting activity, the compounds of this group should bear oxygen atom with a short linker (C2-C4), either as a hydroxyl group (18, 19, 29), keto-group (21) or as a part of a heterocycle (24). These compounds demonstrated low cytotoxicity along with high anti-viral activity.


Subject(s)
Antiviral Agents/chemical synthesis , Camphor/analogs & derivatives , Ethanolamines/chemistry , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Camphor/chemical synthesis , Camphor/chemistry , Camphor/pharmacology , Click Chemistry , Dogs , Ethanolamines/chemical synthesis , Ethanolamines/pharmacology , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Madin Darby Canine Kidney Cells , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...