Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Opt ; 21(5): 56005, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27220626

ABSTRACT

With early detection, 5-year survival rates for ovarian cancer exceed 90%, yet no effective early screening method exists. Emerging consensus suggests over 50% of the most lethal form of the disease originates in the fallopian tube. Twenty-eight women undergoing oophorectomy or debulking surgery provided informed consent for the use of surgical discard tissue samples for multispectral fluorescence imaging. Using multiple ultraviolet and visible excitation wavelengths and emissions bands, 12 fluorescence and 6 reflectance images of 47 ovarian and 31 fallopian tube tissue samples were recorded. After imaging, each sample was fixed, sectioned, and stained for pathological evaluation. Univariate logistic regression showed cancerous tissue samples had significantly lower intensity than noncancerous tissue for 17 image types. The predictive power of multiple image types was evaluated using multivariate logistic regression (MLR) and quadratic discriminant analysis (QDA). Two MLR models each using two image types had receiver operating characteristic curves with area under the curve exceeding 0.9. QDA determined 56 image type combinations with perfect resubstituting using as few as five image types. Adaption of the system for future in vivo fallopian tube and ovary endoscopic imaging is possible, which may enable sensitive detection of ovarian cancer with no exogenous contrast agents.


Subject(s)
Early Detection of Cancer/methods , Fallopian Tubes/diagnostic imaging , Ovarian Neoplasms/diagnostic imaging , Ovary/diagnostic imaging , Female , Fluorescence , Humans
2.
ACS Nano ; 8(6): 6151-62, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24877558

ABSTRACT

Experimental methods for single cell intracellular delivery are essential for probing cell signaling dynamics within complex cellular networks, such as those making up the tumor microenvironment. Here, we show a quantitative and general method of interrogation of signaling pathways. We applied highly focused near-infrared laser light to optically inject gold-coated liposomes encapsulating bioactive molecules into single cells for focal activation of cell signaling. For this demonstration, we encapsulated either inositol trisphosphate (IP3), an endogenous cell signaling second messenger, or adenophostin A (AdA), a potent analogue of IP, within 100 nm gold-coated liposomes, and injected these gold-coated liposomes and their contents into the cytosol of single ovarian carcinoma cells to initiate calcium (Ca(2+)) release from intracellular stores. Upon optical injection of IP3 or AdA at doses above the activation threshold, we observed increases in cytosolic Ca(2+) concentration within the injected cell initiating the propagation of a Ca(2+) wave throughout nearby cells. As confirmed by octanol-induced inhibition, the intercellular Ca(2+) wave traveled via gap junctions. Optical injection of gold-coated liposomes represents a quantitative method of focal activation of signaling cascades of broad interest in biomedical research.


Subject(s)
Adenosine/analogs & derivatives , Calcium/chemistry , Inositol 1,4,5-Trisphosphate/chemistry , Nanotechnology/methods , Ovarian Neoplasms/pathology , Adenosine/chemistry , Cell Line , Cell Line, Tumor , Female , Gap Junctions , Gold/chemistry , Humans , Liposomes/chemistry , Metal Nanoparticles/chemistry , Optics and Photonics , Signal Transduction , Surface Plasmon Resonance
3.
J Biomed Opt ; 19(3): 36020, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24676382

ABSTRACT

Ovarian cancer is the most deadly gynecologic cancer, a fact which is attributable to poor early detection and survival once the disease has reached advanced stages. Intraoperative laparoscopic volume holographic imaging has the potential to provide simultaneous visualization of surface and subsurface structures in ovarian tissues for improved assessment of developing ovarian cancer. In this ex vivo ovarian tissue study, we assembled a benchtop volume holographic imaging system (VHIS) to characterize the microarchitecture of 78 normal and 40 abnormal tissue specimens derived from ovarian, fallopian tube, uterine, and peritoneal tissues, collected from 26 patients aged 22 to 73 undergoing bilateral salpingo-oophorectomy, hysterectomy with bilateral salpingo-oophorectomy, or abdominal cytoreductive surgery. All tissues were successfully imaged with the VHIS in both reflectance- and fluorescence-modes revealing morphological features which can be used to distinguish between normal, benign abnormalities, and cancerous tissues. We present the development and successful application of VHIS for imaging human ovarian tissue. Comparison of VHIS images with corresponding histopathology allowed for qualitatively distinguishing microstructural features unique to the studied tissue type and disease state. These results motivate the development of a laparoscopic VHIS for evaluating the surface and subsurface morphological alterations in ovarian cancer pathogenesis.


Subject(s)
Histocytochemistry/methods , Holography/methods , Image Processing, Computer-Assisted/methods , Optical Imaging/methods , Ovarian Neoplasms/pathology , Adult , Aged , Fallopian Tubes/anatomy & histology , Fallopian Tubes/pathology , Female , Humans , Middle Aged , Ovary/anatomy & histology , Ovary/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...