Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Helminthol ; 95: e1, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33441208

ABSTRACT

Cystic echinococcosis (CE) is a neglected tropical disease, caused by metacestode (larval) form of the Echinococcus granulosus sensu lato (sl) in humans. MicroRNAs (miRNAs) are small, stable, tissue-specific RNA molecules encoded by the genome that are not translated into proteins. Circulating miRNA expression profiles vary in health and disease. The aim of this study is to determine the altered cellular pathways in CE by comparing the miRNA profiles of controls and CE patients with active or inactive cysts. Following abdominal ultrasonography (US) examination, 20 patients diagnosed with active CE (CE1, CE2, CE3a and CE3b) or inactive CE (CE4 and CE5) and three healthy controls were included in the study. The expression profiles of 372 biologically relevant human miRNAs were investigated in serum samples from CE patients and healthy controls with miScript miRNA HC PCR Array. Compared with the control group, expression of 6 miRNAs (hsa-miR-4659a-5p, hsa-miR-4518, hsa-miR-3977, hsa-miR-4692, hsa-miR-181b-3p, hsa-miR-4491) and one miRNA (hsa-miR-4687-5p) were found to be downregulated in CE patients with active and inactive cysts, respectively (p < 0.05). For downregulated miRNAs in this study, predicted targets were found to be associated mainly with cell proliferation, apoptosis, cell-cell interactions and cell cycle regulation. Further studies in this direction may elucidate the pathogenesis of human CE and the relationship between CE and other pathologies.


Subject(s)
Echinococcosis , MicroRNAs , Animals , Case-Control Studies , Echinococcosis/genetics , Echinococcus granulosus , Gene Expression Profiling , Humans , MicroRNAs/genetics
2.
Zoonoses Public Health ; 61(7): 480-91, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25285941

ABSTRACT

Toscana virus (TOSV), West Nile virus (WNV) and tickborne encephalitis virus (TBEV) are among major viral pathogens causing febrile disease and meningitis/encephalitis. The impact of these viruses was investigated at a referral centre in Ankara Province, Central Anatolia in 2012, where previous reports suggested virus circulation but with scarce information on clinical cases and vector activity. Serum and/or cerebrospinal fluid samples from 94 individuals were evaluated, in addition to field-collected arthropod specimens that included 767 sandflies and 239 mosquitoes. Viral nucleic acids in clinical samples and arthropods were sought via specific and generic nested/real-time PCRs, and antibody responses in clinical samples were investigated via commercial indirect immunofluorescence tests (IIFTs) and virus neutralization. A WNV antigen assay was also employed for mosquitoes. WNV neuroinvasive disease has been identified in a 63-year-old male via RNA detection, and the WNV strain was characterized as lineage 1. TOSV infections were diagnosed in six individuals (6.3%) via RNA or IgM detection. Partial sequences in a 23-year-old female, presented with fever and transient pancytopenia, were characterized as TOSV genotype A. Febrile disease with arthralgia and/or peripheral cranial nerve involvement was noted in cases with TOSV infections. Previous WNV and TOSV exposures have been observed in 5.3% and 2.1% of the subjects, respectively. No confirmed TBEV exposure could be identified. Morphological identification of the field-collected mosquitoes revealed Culex pipiens sensu lato (74.4%), Anopheles maculipennis (20.9%), An. claviger (2.1%) and others. Sandfly species were determined as Phlebotomus papatasi (36.2%), P. halepensis (27.3%), P. major s. l. (19.3%), P. sergenti (8.9%), P. perfiliewi (4.4%), P. simici (2.6%) and others. Viral infections in arthropods could not be demonstrated. TOSV genotype A and WNV lineage 1 activity have been demonstrated as well as serologically proven exposure in patients. Presence of sandfly and mosquito species capable of virus transmission has also been revealed.


Subject(s)
Bunyaviridae Infections/blood , Bunyaviridae Infections/cerebrospinal fluid , Sandfly fever Naples virus , West Nile Fever/blood , West Nile Fever/cerebrospinal fluid , Adult , Animals , Culicidae/virology , Female , Genotype , Humans , Immunoglobulin G/blood , Immunoglobulin G/cerebrospinal fluid , Immunoglobulin M/blood , Immunoglobulin M/cerebrospinal fluid , Insect Vectors/virology , Male , Middle Aged , Psychodidae/virology , RNA, Viral/blood , RNA, Viral/cerebrospinal fluid , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Sandfly fever Naples virus/genetics , Sandfly fever Naples virus/isolation & purification , Sequence Analysis , Turkey , West Nile virus/genetics , West Nile virus/isolation & purification , Young Adult , Zoonoses/blood , Zoonoses/cerebrospinal fluid , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...