Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosurg Pediatr ; 22(1): 1-8, 2018 07.
Article in English | MEDLINE | ID: mdl-29701560

ABSTRACT

OBJECTIVE Increased understanding of the consequences of traumatic brain injury has heightened concerns about youth participation in contact sports. This study investigated the prevalence of high school and collegiate contact sports play and concussion history among surgical department chairs. METHODS A cross-sectional survey was administered to 107 orthopedic and 74 neurosurgery chairs. Responses were compared to published historical population norms for contact sports (high school 27.74%, collegiate 1.44%), football (high school 10.91%, collegiate 0.76%), and concussion prevalence (12%). One-proportion Z-tests, chi-square tests, and binary logistic regression were used to analyze differences. RESULTS High school contact sports participation was 2.35-fold higher (65.3%, p < 0.001) for orthopedic chairs and 1.73-fold higher (47.9%, p = 0.0018) for neurosurgery chairs than for their high school peers. Collegiate contact sports play was 31.0-fold higher (44.7%, p < 0.001) for orthopedic chairs and 15.1-fold higher (21.7%, p < 0.001) for neurosurgery chairs than for their college peers. Orthopedic chairs had a 4.30-fold higher rate of high school football participation (46.9%, p < 0.001) while neurosurgery chairs reported a 3.05-fold higher rate (33.3%, p < 0.001) than their high school peers. Orthopedic chairs reported a 28.1-fold higher rate of collegiate football participation (21.3%, p < 0.001) and neurosurgery chairs reported an 8.58-fold higher rate (6.5%, p < 0.001) compared to their college peers. The rate at which orthopedic (42.6%, p < 0.001) and neurosurgical (42.4%, p < 0.001) chairs reported having at least 1 concussion in their lifetime was significantly higher than the reported prevalence in the general population. After correction for worst possible ascertainment bias, all results except high school contact sports participation remained significant. CONCLUSIONS The high prevalence of youth contact sports play and concussion among surgical specialty chairs affirms that individuals in careers requiring high motor and cognitive function frequently played contact sports. The association highlights the need to further examine the relationships between contact sports and potential long-term benefits as well as risks of sport-related injury.


Subject(s)
Athletic Injuries/complications , Athletic Injuries/epidemiology , Brain Concussion/epidemiology , Brain Concussion/etiology , Adolescent , Athletic Injuries/surgery , Brain Concussion/surgery , Chi-Square Distribution , Cross-Sectional Studies , Female , Humans , Logistic Models , Male , Neurosurgery/psychology , Orthopedics , Prevalence , United States/epidemiology , Young Adult
2.
Orthopedics ; 33(3)2010 Mar.
Article in English | MEDLINE | ID: mdl-20349878

ABSTRACT

Managing skeletal metastatic disease can be a challenging task for the orthopedic surgeon. In patients who have poor survival prognoses or are poor candidates for extensive reconstructive procedures, management with intralesional curettage and stabilization with bone cement with or without internal fixation to prevent development or propagation of a pathologic fracture may be the best option. The use of bone cement is preferable over the use of bone graft, as it allows for immediate postoperative weight bearing on the affected extremity.This article describes a case where the combined use of arthroscopy and a 2-stage cementation technique may allow preservation of the articular surface and optimization of short-term functional outcome after curettage of a periarticular metastatic lesion in a patient with an end-stage malignancy. We used knee arthroscopy to identify any articular penetration or intra-articular loose bodies after curettage and initial cementation of the periarticular lesion of the distal femur. Arthroscopic evaluation was carried out again after the lesion was packed with cement to identify and remove any loose intra-articular debris. The applicability of this technique is broad, and it can be used in any procedure involving cement packing in a periarticular location. Performed with caution, this technique can be a useful adjunct to surgical management of both malignant and locally aggressive benign bone lesions in periarticular locations.


Subject(s)
Arthroscopy/methods , Bone Cements/therapeutic use , Carcinoma, Non-Small-Cell Lung/secondary , Carcinoma, Non-Small-Cell Lung/therapy , Cementation/methods , Femoral Neoplasms/secondary , Femoral Neoplasms/therapy , Aged , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Combined Modality Therapy/methods , Femoral Neoplasms/diagnostic imaging , Humans , Male , Radiography , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...