Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37511269

ABSTRACT

The first conotoxin affecting the voltage-gated potassium channels of the EAG family was identified and characterized from the venom of the vermivorous species Conus spurius from the Gulf of Mexico. This conopeptide, initially named Cs68 and later designated κO-SrVIA, is extremely hydrophobic and comprises 31 amino acid residues, including six Cysteines in the framework VI/VII, and a free C-terminus. It inhibits the currents mediated by two human EAG subtypes, Kv10.1 (IC50 = 1.88 ± 1.08 µM) and Kv11.1 (IC50 = 2.44 ± 1.06 µM), and also the human subtype Kv1.6 (IC50 = 3.6 ± 1.04 µM). Despite its clear effects on potassium channels, it shares a high sequence identity with δ-like-AtVIA and δ-TsVIA. Also, κO-SrVIA is the third conopeptide from the venom of C. spurius with effects on potassium channels, and the seventh conotoxin that blocks Kv1.6 channels.


Subject(s)
Conotoxins , Conus Snail , Ether-A-Go-Go Potassium Channels , Animals , Humans , Amino Acid Sequence , Conotoxins/pharmacology , Conotoxins/chemistry , Conus Snail/chemistry , Ether-A-Go-Go Potassium Channels/drug effects , Ether-A-Go-Go Potassium Channels/metabolism , Ether-A-Go-Go Potassium Channels/toxicity , Peptides/chemistry
2.
Toxins (Basel) ; 14(8)2022 07 26.
Article in English | MEDLINE | ID: mdl-35893752

ABSTRACT

We isolated a new dimeric conotoxin with inhibitory activity against neuronal nicotinic acetylcholine receptors. Edman degradation and transcriptomic studies indicate a homodimeric conotoxin composed by two chains of 47 amino acid in length. It has the cysteine framework XX and 10 disulfide bonds. According to conotoxin nomenclature, it has been named as αD-FrXXA. The αD-FrXXA conotoxin inhibited the ACh-induced response on nAChR with a IC50 of 125 nM on hα7, 282 nM on hα3ß2, 607 nM on α4ß2, 351 nM on mouse adult muscle, and 447 nM on mouse fetal muscle. This is first toxin characterized from C. fergusoni and, at the same time, the second αD-conotoxin characterized from a species of the Eastern Pacific.


Subject(s)
Conotoxins , Conus Snail , Receptors, Nicotinic , Amino Acid Sequence , Animals , Conotoxins/chemistry , Conus Snail/chemistry , Mice , Nicotinic Antagonists/metabolism , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/metabolism , Snails/metabolism
3.
Insect Biochem Mol Biol ; 124: 103416, 2020 09.
Article in English | MEDLINE | ID: mdl-32592834

ABSTRACT

Almost all marine snails within superfamily Conoidea produce venoms containing numerous neuroactive peptides. Most toxins characterized from members of this superfamily are produced by species belonging to family Conidae. These toxins (conotoxins) affect diverse membrane proteins, such as voltage- and ligand-gated ion channels, including nicotinic acetylcholine receptors (nAChRs). Family Turridae has been considerably less studied than their Conidae counterpart and, therefore, turrid toxins (turritoxins) have just been barely described. Consequently, in this work the most prominent chromatographic (RP-HPLC) fractions from the East Pacific species Polystira nobilis venom duct extract were isolated. The biological activity of six selected fractions was assayed on human (h) α7 AChRs expressed in Xenopus laevis oocytes. One of these fractions, F21, inhibited the acetylcholine-elicited response by 62 ± 12%. Therefore, this fraction was further purified and the F21-2 peptide was obtained. This peptide (at 5.6 µM) strongly and irreversibly inhibited the acetylcholine-induced response on hα7 and hα3ß2 nAChRs, by 55 ± 4 and 91 ± 1%, respectively. Electrospray mass spectrometry indicates that the average molecular mass of this toxin is 12 358.80 Da. The affinity for hα3ß2 nAChRs is high (IC50 of 566.2 nM). A partial sequence without cysteines was obtained by automated Edman degradation: WFRSFKSYYGHHGSVYRPNEPNFRSFAS…; blastp search revealed that this sequence has low similarity to some non-Cys-containing turripeptides. This is the first report of a turritoxin from a species of the American Pacific and the second description of a turripeptide inhibiting nAChRs.


Subject(s)
Conotoxins/pharmacology , Mollusk Venoms , Receptors, Nicotinic/drug effects , Animals , Humans , Mollusk Venoms/chemistry , Mollusk Venoms/isolation & purification , Mollusk Venoms/metabolism , Mollusk Venoms/toxicity , Oocytes , Recombinant Proteins/pharmacology , Snails/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...