Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Clin Med ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673521

ABSTRACT

Background: The Mexican population exhibits several cardiovascular risk factors (CVRF) including high blood pressure (HBP), dysglycemia, dyslipidemia, overweight, and obesity. This study is an extensive observation of the most important CVFRs in six of the most populated cities in Mexico. Methods: In a cohort of 297,370 participants (54% female, mean age 43 ± 12.6 years), anthropometric (body mass index (BMI)), metabolic (glycemia and total cholesterol (TC)), and blood pressure (BP) data were obtained. Results: From age 40, 40% and 30% of the cohort's participants were overweight or obese, respectively. HBP was found in 27% of participants. However, only 8% of all hypertensive patients were controlled. Fifty percent of the subjects 50 years and older were hypercholesterolemic. Glycemia had a constant linear relation with age. BMI had a linear correlation with SBP, glycemia, and TC, with elevated coefficients in all cases and genders. The ß1 coefficient for BMI was more significant in all equations than the other ß, indicating that it greatly influences the other CVRFs. Conclusions: TC, glycemia, and SBP, the most critical atherogenic factors, are directly related to BMI.

2.
Mol Neurobiol ; 61(1): 450-464, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37626269

ABSTRACT

Mild cognitive impairment (MCI) is defined as inter-stage between normal cognitive aging and major neurocognitive disorder (MND). This state of decay is a crucial factor in treatment to prevent the progression to MND. In this study, our group developed a virtual screening process to evaluate 2568 phytochemical compounds against 5 key proteins associated with MCI and MND. As a result, two potential candidates were identified: carpaine, found in Carica papaya leaves, and punicalagin, present in Punica granatum. A model of cognitive impairment (CI) was developed in 10-month-old male Sprague Dawley rats by administering aluminum chloride (AlCl3) at a dose of 100 mg/kg/day for 30 days. After AlCl3 administration period, one of the groups received carpaine and punicalagin in a phytochemical extract (PE) by oral gavage for 30 days. Novel object recognition test (NOR) was assessed at three different time points (T1 - before CI, T2 - after CI, and T3 - after PE treatment). Glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) were identified in the hippocampus of rats at the end of the study period. After administration of AlCl3, a reduction in discrimination index vs control rats (CI = 0.012 ± 0.08 vs Control = 0.076 ± 0.03), was observed. After phytochemical extract treatment, a significant increase in discrimination index values was observed in the PE group 0.4643 ± 0.13 vs CI group 0.012 ± 0.08. Additionally, the evaluation of immunohistochemistry showed an increase in GFAP positivity in the hippocampus of the CI groups, while a slight decrease was observed in the PE group. This work addressed a comprehensive methodology that utilized in silico tools to identify phytochemical compounds (carpaine and punicalagin) as potential candidates for affecting key proteins in CI. The phytochemical extract containing carpaine and punicalagin resulted in a trend in the decrease of GFAP expression in the hippocampus and improved recognition memory in rats with CI induced by age and AlCl3 administration.


Subject(s)
Carica , Cognitive Dysfunction , Hydrolyzable Tannins , Pomegranate , Mice , Rats , Male , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Carica/chemistry , Disease Models, Animal , Rats, Sprague-Dawley , Cognitive Dysfunction/drug therapy , Phytochemicals , Seeds
3.
Molecules ; 28(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687058

ABSTRACT

Breast cancer, due to its high incidence and mortality, is a public health problem worldwide. Current chemotherapy uses non-specific cytotoxic drugs, which inhibit tumor growth but cause significant adverse effects. (-)-Epicatechin (EC) is part of a large family of biomolecules called flavonoids. It is widely distributed in the plant kingdom; it can be found in green tea, grapes, and cocoa. Several studies in animals and humans have shown that EC induces beneficial effects in the skeletal muscle and the cardiovascular system, reducing risk factors such as arterial hypertension, endothelial dysfunction, damage to skeletal muscle structure, and mitochondrial malfunction by promoting mitochondrial biogenesis, with no adverse effects reported. Recently, we reported that EC had an antitumor effect in a murine triple-negative mammary gland tumor model, decreasing tumoral size and volume and increasing survival by 44%. This work aimed to characterize the effects of flavanol EC on proliferation, migration, and metastasis markers of triple-negative murine breast (4T1) cancer cells in culture. We found proliferation diminished and Bax/Bcl2 ratio increased. When the migration of culture cells was evaluated, we observed a significant reduction in migration. Also, the relative expression of the genes associated with metastasis, Cdh1, Mtss1, Pten, Bmrs, Fat1, and Smad4, was increased. In conclusion, these results contribute to understanding molecular mechanisms activated by EC that can inhibit metastatic-associated proliferation, migration, and invasion of murine breast cancer cells.


Subject(s)
Catechin , Drug-Related Side Effects and Adverse Reactions , Humans , Animals , Mice , Catechin/pharmacology , Neoplastic Processes , Flavonoids/pharmacology , Cell Proliferation
4.
J Clin Med ; 13(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38202201

ABSTRACT

BACKGROUND: Age-adjusted rates of cardiovascular disease (CVD) are higher in men than in women. CVD risk-factor outcomes are underrecognized, underestimated, and undertreated in women because the clinical expressions in women differ from those of men. There are no universally accepted recommendations on what to do in women when the values of fasting glucose, blood pressure, and lipids are only slightly altered or at borderline values. We reported the positive effects on CVD risk markers using cacao by-products, showing that alternative approaches can be used to prevent cardiovascular disease in women. The objective was to evaluate the changes in lipoprotein subfractions induced by three months of treatment with an epicatechin-enriched cacao supplement. METHODS: A double-blind, placebo-controlled proof-of-concept study was developed to evaluate the effects of 3 months of treatment with an (-)-epicatechin-enriched cacao supplement on lipoprotein subfractions. RESULTS: The usual screening workshop for postmenopausal women could be insufficient and misleading. Assessing the effect of a (-)-epicatechin-enriched cacao supplement employing a lipoprotein subfractionation profile analysis suggests a decrease in cardiovascular risk. CONCLUSIONS: A simple, low-cost, safe (-)-epicatechin-enriched cacao supplement product can improve the cardiovascular risk in postmenopausal women.

5.
J Clin Med ; 11(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36556051

ABSTRACT

COVID-19 can trigger an intense systemic inflammation and prothrombotic state, leading to a rapid and disproportionate deterioration of lung function. An effective screening tool is essential to identify the patients at risk for severe disease. This observational study was conducted on hospitalized patients with moderate and severe COVID-19 pneumonia in a general hospital in Mexico City between 1 March 2021 and 15 March 2021. Serum samples were analyzed to explore the role of biomarkers of inflammation, coagulation, oxidative stress, and endothelial damage with the severity of the disease. Our results demonstrated that Syndecan-1 and nitrites/nitrates showed a high correlation in severely ill patients. In conclusion, COVID-19 patients with elevated levels of SDC-1 were associated with severe disease. This molecule can potentially be used as a marker for the progression or severity of COVID-19. Preservation of glycocalyx integrity may be a potential treatment for COVID-19.

6.
J Mol Model ; 28(12): 404, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36445575

ABSTRACT

Despite the development of vaccines against COVID-19 disease and the multiple efforts to find efficient drugs as treatment for this virus, there are too many social, political, economic, and health inconveniences to incorporate a fully accessible plan of prevention and therapy against SARS-CoV-2. In this sense, it is necessary to find nutraceutical/pharmaceutical drugs as possible COVID-19 preventives/treatments. Based on their beneficial effects, flavonoids are one of the most promising compounds. Therefore, using virtual screening, 478 flavonoids obtained from the KEGG database were evaluated against non-structural proteins Nsp1, Nsp3, Nsp5, Nsp12, and Nsp15, which are essential for the virus-host cell infection, searching for possible multitarget flavonoids. Amentoflavone, a biflavonoid found mainly in Ginkgo biloba, Lobelia chinensis, and Byrsonima intermedia, can interact and bind with the five proteins, suggesting its potential as a multitarget inhibitor. Molecular docking calculations and structural analysis (RMSD, number of H bonds, and clustering) performed from molecular dynamics simulations of the amentoflavone-protein complex support this potential. The results shown here are theoretical evidence of the probable multitarget inhibition of non-structural proteins of SARS-CoV-2 by amentoflavone, which has wide availability, low cost, no side effects, and long history of use. These results are solid evidence for future in vitro and in vivo experiments aiming to validate amentoflavone as an inhibitor of the Nsp1, 3, 5, 12, and 15 of SARS-CoV-2.


Subject(s)
Biflavonoids , COVID-19 Drug Treatment , Humans , Biflavonoids/pharmacology , SARS-CoV-2 , Flavonoids/pharmacology , Molecular Docking Simulation , COVID-19 Vaccines
7.
Int J Mol Sci ; 23(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36012227

ABSTRACT

(-)-Epicatechin (EC) is part of a large family of biomolecules called flavonoids and is widely distributed in the plant kingdom. Several studies have shown the beneficial effects of EC consumption. Many of these reported effects are exerted by activating the signaling pathways associated with the activation of two specific receptors: the G protein-coupled estrogen receptor (GPER), a transmembrane receptor, and the pregnane X receptor (PXR), which is a nuclear receptor. However, the effects of EC are so diverse that these two receptors cannot describe the complete phenomenon. The apelin receptor or APLNR is classified within the G protein-coupled receptor (GPCR) family, and is capable of activating the G protein canonical pathways and the ß-arrestin transducer, which participates in the phenomenon of receptor desensitization and internalization. ß-arrestin gained interest in selective pharmacology and mediators of the so-called "biased agonism". With molecular dynamics (MD) and in vitro assays, we demonstrate how EC can recruit the ß-arrestin in the active conformation of the APLN receptor acting as a biased agonist.


Subject(s)
Catechin , Apelin Receptors/metabolism , Catechin/pharmacology , GTP-Binding Proteins/metabolism , Ligands , Receptors, G-Protein-Coupled/metabolism , beta-Arrestins/metabolism
8.
J Basic Clin Physiol Pharmacol ; 33(6): 703-714, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35119232

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is characterized by a spectrum of diseases, ranging from simple steatosis to hepatocellular carcinoma. The main factors for NAFLD are closely related to obesity, insulin resistance, intestinal microbiota alterations, hyperinsulinism, low-grade systemic inflammation, nitroxidative stress, lipid peroxidation, and mitochondrial dysfunction. Currently, the treatment of NAFLD is based on diet and exercise because, to date, there is no specific pharmacological agent, already approved, that raises the need for new therapeutic strategies. Nutraceuticals, such as polyphenols, have potential beneficial effects for health. In this article, the beneficial effects of epigallocatechin-3-gallate (EGCG) and (-)-epicatechin (EC) are discussed. EGCG is the main catechin in green tea, which has shown in various studies its potential effect preventing and treating NAFLD since it has shown antihyperlipidemic, anti-inflammatory, antifibrotic, antioxidant, and improvement of liver lipid metabolism. However, it has been found that excessive consumption may cause hepatotoxicity. EC is widely distributed in nature (fruits and vegetables). This flavanol has shown many beneficial effects, including antihypertensive, anti-inflammatory, anti-hyperglycemic, antithrombotic, and antifibrotic properties. It increases mitochondrial biogenesis, and it also has effects on the regulation of synthesis and metabolism of lipids. This flavanol is a nontoxic substance; it has been classified by the United States Food and Drug Administration as harmless. The EC-induced effects can be useful for the prevention and/or treatment of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Tea , Polyphenols/pharmacology , Liver , Dietary Supplements , Anti-Inflammatory Agents/pharmacology
9.
Heliyon ; 6(10): e05357, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33163657

ABSTRACT

(-)-Epicatechin (EC) is a flavanol that has shown numerous biological effects such as: decrease risk of cardiovascular dysfunction, metabolism regulation, skeletal muscle (SkM) performance improvement and SkM cells differentiation induction, among others. The described EC acceptor/receptor molecules do not explain the EC's effect on SkM. We hypothesize that the pregnane X receptor (PXR) can fulfill those characteristics, based on structural similitude between EC and steroidal backbone and that PXR activation leads to similar effects as those induced by EC. In order to demonstrate our hypothesis, we: 1) analyzed the possible EC and mouse PXR interaction through in silico strategies, 2) developed an EC's affinity column to isolate PXR, 3) evaluated, in mouse myoblast (C2C12 cells) the inhibition of EC-induced PXR's nucleus translocation by ketoconazole, a specific blocker of PXR and 4) analyzed the effect of EC as an activator of mouse PXR, evaluating the expression modulation of cytochrome 3a11 (Cyp3a11) gen and myogenin protein. (-)-Epicatechin interacts and activates PXR, promoting this protein translocation to the nucleus, increasing the expression of Cyp3a11, and promoting C2C12 cell differentiation through increasing myogenin expression. These results can be the base of further studies to analyze the possible participation of PXR in the skeletal muscle effects shown by EC.

10.
Eur J Pharmacol ; 885: 173442, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32795514

ABSTRACT

Endothelial dysfunction (EnD) occurs with aging and endothelial nitric oxide (NO) production by NO synthase (NOS) can be impaired. Low NO levels have been linked to increased arginase (Ar) activity as Ar competes with NOS for L-arginine. The inhibition of Ar activity can reverse EnD and (-)-epicatechin (Epi) inhibits myocardial Ar activity. In this study, through in silico modeling we demonstrate that Epi interacts with Ar similarly to its inhibitor Norvaline (Norv). Using in vitro and in vivo models of aging, we examined Epi and Norv-inhibition of Ar activity and its endothelium-protective effects. Bovine coronary artery endothelial cells (BCAEC) were treated with Norv (10 µM), Epi (1 µM) or the combination (Epi + Norv) for 48 h. Ar activity increased in aged BCAEC, with decreased NO generation. Treatment decreased Ar activity to levels seen in young cells. Epi and Epi + Norv decreased nitrosylated Ar levels by ~25% in aged cells with lower oxidative stress (~25%) (dihydroethidium) levels. In aged cells, Epi and Epi + Norv restored the eNOS monomer/dimer ratio, protein expression levels and NO production to those of young cells. Furthermore, using 18 month old rats 15 days of treatment with either Epi (1 mg/kg), Norv (10 mg/kg) or combo, decreased hypertension and improved aorta vasorelaxation to acetylcholine, blood NO levels and tetra/dihydribiopterin ratios in cultured rat aortic endothelial cells. In conclusion, results provide evidence that inhibiting Ar with Epi reverses aged-related loss of eNOS function and improves vascular function through the modulation of Ar and eNOS protein levels and activity.


Subject(s)
Arginase/antagonists & inhibitors , Catechin/pharmacology , Cellular Senescence/drug effects , Endothelial Cells/drug effects , Animals , Biopterins/analogs & derivatives , Biopterins/pharmacology , Blood Pressure/drug effects , Cattle , Computer Simulation , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Male , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar , Valine/analogs & derivatives , Valine/pharmacology
11.
Eur J Pharmacol ; 818: 335-342, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-29126791

ABSTRACT

The production of nitric oxide (NO) by nitric oxide synthases (NOS) depends on the bioavailability of L-arginine as NOS competes with arginase for this common substrate. As arginase activity increases, less NO is produced and adverse cardiovascular consequences can emerge. (-)-Epicatechin (EPI), the most abundant flavonoid in cacao, has been reported to stimulate endothelial and neuronal NOS expression and function leading to enhanced vascular function and cardioprotective effects. However, little is known about the effects of EPI on myocardial arginase activity. The aim of the present study was to determine if EPI is able to interact and modulate myocardial arginase and NOS expression and activity. For this purpose, in silico modeling, in vitro activity assays and a rat model of ischemia/reperfusion injury were used. In silico and in vitro results demonstrate that EPI can interact with arginase and significantly decrease its activity. In vivo, 10 days of EPI pretreatment reduces ischemic myocardium arginase expression while increasing NOS expression and phosphorylation levels. Altogether, these results may partially account for the cardioprotective effects of EPI.


Subject(s)
Arginase/antagonists & inhibitors , Cardiotonic Agents/pharmacology , Catechin/pharmacology , Enzyme Inhibitors/pharmacology , Reperfusion Injury/enzymology , Reperfusion Injury/prevention & control , Animals , Arginase/chemistry , Arginase/metabolism , Catechin/metabolism , Disease Models, Animal , Enzyme Inhibitors/metabolism , Molecular Docking Simulation , Myocardium/enzymology , Nitric Oxide Synthase/metabolism , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...