Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Proc Natl Acad Sci U S A ; 120(14): e2221255120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36972453

ABSTRACT

Izumo1R is a pseudo-folate receptor with an essential role in mediating tight oocyte/spermatozoa contacts during fertilization. Intriguingly, it is also expressed in CD4+ T lymphocytes, in particular Treg cells under the control of Foxp3. To understand Izumo1R function in Treg cells, we analyzed mice with Treg-specific Izumo1r deficiency (Iz1rTrKO). Treg differentiation and homeostasis were largely normal, with no overt autoimmunity and only marginal increases in PD1+ and CD44hi Treg phenotypes. pTreg differentiation was also unaffected. Iz1rTrKO mice proved uniquely susceptible to imiquimod-induced, γδT cell-dependent, skin disease, contrasting with normal responses to several inflammatory or tumor challenges, including other models of skin inflammation. Analysis of Iz1rTrKO skin revealed a subclinical inflammation that presaged IMQ-induced changes, with an imbalance of Rorγ+ γδT cells. Immunostaining of normal mouse skin revealed the expression of Izumo1, the ligand for Izumo1R, electively in dermal γδT cells. We propose that Izumo1R on Tregs enables tight contacts with γδT cells, thereby controlling a particular path of skin inflammation.


Subject(s)
Dermatitis , Psoriasis , Receptors, Cell Surface , Skin Diseases , T-Lymphocytes, Regulatory , Animals , Mice , Dermatitis/metabolism , Imiquimod , Inflammation/metabolism , Psoriasis/metabolism , Receptors, Cell Surface/metabolism , Skin/metabolism , Skin Diseases/metabolism , T-Lymphocytes, Regulatory/metabolism
2.
Proc Natl Acad Sci U S A ; 119(41): e2209624119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36201539

ABSTRACT

T cells that express the transcription factor RORγ, regulatory (Treg), or conventional (Th17) are strongly influenced by intestinal symbionts. In a genetic approach to identify mechanisms underlying this influence, we performed a screen for microbial genes implicated, in germfree mice monocolonized with Escherichia coli Nissle. The loss of capsule-synthesis genes impaired clonal expansion and differentiation of intestinal RORγ+ T cells. Mechanistic exploration revealed that the capsule-less mutants remained able to induce species-specific immunoglobulin A (IgA) and were highly IgA-coated. They could still trigger myeloid cells, and more effectively damaged epithelial cells in vitro. Unlike wild-type microbes, capsule-less mutants were mostly engulfed in intraluminal casts, large agglomerates composed of myeloid cells extravasated into the gut lumen. We speculate that sequestration in luminal casts of potentially harmful microbes, favored by IgA binding, reduces the immune system's actual exposure, preserving host-microbe equilibrium. The variable immunostimulation by microbes that has been charted in recent years may not solely be conditioned by triggering molecules or metabolites but also by physical limits to immune system exposure.


Subject(s)
Gastrointestinal Tract , Nuclear Receptor Subfamily 1, Group F, Member 3 , T-Lymphocytes, Regulatory , Animals , Escherichia coli , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Immunoglobulin A , Lymphocyte Activation , Mice , Myeloid Cells , Transcription Factors/metabolism
3.
Proc Natl Acad Sci U S A ; 115(45): E10672-E10681, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30348759

ABSTRACT

FoxP3+ T regulatory (Treg) cells are central elements of immunologic tolerance. They are abundant in many tumors, where they restrict potentially favorable antitumor responses. We used a three-pronged strategy to identify genes related to the presence and function of Tregs in the tumor microenvironment. Gene expression profiles were generated from tumor-infiltrating Tregs (TITRs) of both human and mouse tumors and were compared with those of Tregs of lymphoid organs or normal tissues from the same individuals. A computational deconvolution of whole-tumor datasets from the Cancer Genome Atlas (TCGA) was performed to identify transcripts specifically associated with Tregs across thousands of tumors from different stages and locations. We identified a set of TITR-differential transcripts with striking reproducibility between tumor types in mice, between mice and humans, and between different human patients spanning tumor stages. Many of the TITR-preferential transcripts were shared with "tissue Tregs" residing in nonlymphoid tissues, but a tumor-preferential segment could be identified. Many of these TITR signature transcripts were confirmed by mining of TCGA datasets, which also brought forth transcript modules likely representing the parenchymal attraction of, or response to, tumor Tregs. Importantly, the TITR signature included several genes encoding effective targets of tumor immunotherapy. A number of other targets were validated by CRISPR-based gene inactivation in mouse Tregs. These results confirm the validity of the signature, generating a wealth of leads for understanding the role of Tregs in tumor progression and identifying potential targets for cancer immunotherapy.


Subject(s)
Neoplasms/pathology , T-Lymphocytes, Regulatory/immunology , Transcription, Genetic , Animals , Humans , Mice , Neoplasms/genetics , RNA, Messenger/genetics , Reproducibility of Results
4.
Cell ; 168(5): 928-943.e11, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28215708

ABSTRACT

Within the human gut reside diverse microbes coexisting with the host in a mutually advantageous relationship. Evidence has revealed the pivotal role of the gut microbiota in shaping the immune system. To date, only a few of these microbes have been shown to modulate specific immune parameters. Herein, we broadly identify the immunomodulatory effects of phylogenetically diverse human gut microbes. We monocolonized mice with each of 53 individual bacterial species and systematically analyzed host immunologic adaptation to colonization. Most microbes exerted several specialized, complementary, and redundant transcriptional and immunomodulatory effects. Surprisingly, these were independent of microbial phylogeny. Microbial diversity in the gut ensures robustness of the microbiota's ability to generate a consistent immunomodulatory impact, serving as a highly important epigenetic system. This study provides a foundation for investigation of gut microbiota-host mutualism, highlighting key players that could identify important therapeutics.


Subject(s)
Bacteria/classification , Gastrointestinal Microbiome , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Adaptive Immunity , Animals , Bacterial Physiological Phenomena , Gastrointestinal Tract/cytology , Gastrointestinal Tract/physiology , Germ-Free Life , Humans , Immunity, Innate , Mice , Mice, Inbred C57BL , Symbiosis
5.
Proc Natl Acad Sci U S A ; 113(50): E8141-E8150, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27911839

ABSTRACT

Th17 cells accrue in the intestine in response to particular microbes. In rodents, segmented filamentous bacteria (SFB) induce intestinal Th17 cells, but analogously functioning microbes in humans remain undefined. Here, we identified human symbiont bacterial species, in particular Bifidobacterium adolescentis, that could, alone, induce Th17 cells in the murine intestine. Similar to SFB, B. adolescentis was closely associated with the gut epithelium and engendered cognate Th17 cells without attendant inflammation. However, B. adolescentis elicited a transcriptional program clearly distinct from that of SFB, suggesting an alternative mechanism of promoting Th17 cell accumulation. Inoculation of mice with B. adolescentis exacerbated autoimmune arthritis in the K/BxN mouse model. Several off-the-shelf probiotic preparations that include Bifidobacterium strains also drove intestinal Th17 cell accumulation.


Subject(s)
Bifidobacterium adolescentis/immunology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/cytology , Intestinal Mucosa/microbiology , Th17 Cells/immunology , Animals , Arthritis, Experimental/etiology , Arthritis, Experimental/immunology , Arthritis, Experimental/microbiology , Bifidobacterium adolescentis/isolation & purification , Female , Gene Expression Profiling , Germ-Free Life/genetics , Germ-Free Life/immunology , Humans , Immunity, Mucosal , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/immunology , Male , Mice , Mice, Inbred C57BL , Probiotics , Symbiosis/genetics , Symbiosis/immunology , Th17 Cells/cytology
6.
Proc Natl Acad Sci U S A ; 113(35): 9852-7, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27516546

ABSTRACT

Small-molecule inhibitors of the Janus kinase family (JAKis) are clinically efficacious in multiple autoimmune diseases, albeit with increased risk of certain infections. Their precise mechanism of action is unclear, with JAKs being signaling hubs for several cytokines. We assessed the in vivo impact of pan- and isoform-specific JAKi in mice by immunologic and genomic profiling. Effects were broad across the immunogenomic network, with overlap between inhibitors. Natural killer (NK) cell and macrophage homeostasis were most immediately perturbed, with network-level analysis revealing a rewiring of coregulated modules of NK cell transcripts. The repression of IFN signature genes after repeated JAKi treatment continued even after drug clearance, with persistent changes in chromatin accessibility and phospho-STAT responsiveness to IFN. Thus, clinical use and future development of JAKi might need to balance effects on immunological networks, rather than expect that JAKis affect a particular cytokine response and be cued to long-lasting epigenomic modifications rather than by short-term pharmacokinetics.


Subject(s)
Cytokines/metabolism , Janus Kinase Inhibitors/pharmacology , Janus Kinases/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Cytokines/genetics , Gene Regulatory Networks/drug effects , Gene Regulatory Networks/immunology , Immunogenetic Phenomena/drug effects , Immunogenetic Phenomena/genetics , Janus Kinases/genetics , Janus Kinases/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Signal Transduction/genetics , Transcriptome/drug effects , Transcriptome/immunology
7.
Science ; 349(6251): 993-7, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26272906

ABSTRACT

T regulatory cells that express the transcription factor Foxp3 (Foxp3(+) T(regs)) promote tissue homeostasis in several settings. We now report that symbiotic members of the human gut microbiota induce a distinct T(reg) population in the mouse colon, which constrains immuno-inflammatory responses. This induction­which we find to map to a broad, but specific, array of individual bacterial species­requires the transcription factor Rorγ, paradoxically, in that Rorγ is thought to antagonize FoxP3 and to promote T helper 17 (T(H)17) cell differentiation. Rorγ's transcriptional footprint differs in colonic T(regs) and T(H)17 cells and controls important effector molecules. Rorγ, and the T(regs) that express it, contribute substantially to regulating colonic T(H)1/T(H)17 inflammation. Thus, the marked context-specificity of Rorγ results in very different outcomes even in closely related cell types.


Subject(s)
Colon/immunology , Immunity, Mucosal , Intestinal Mucosa/immunology , Microbiota/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , Bacteria/immunology , Bacteroidetes/immunology , Bacteroidetes/physiology , Colitis, Ulcerative/immunology , Colon/microbiology , Forkhead Transcription Factors/analysis , Forkhead Transcription Factors/metabolism , Homeostasis , Humans , Intestinal Mucosa/microbiology , Mice, Inbred C57BL , Microbiota/physiology , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Symbiosis , T-Lymphocyte Subsets/immunology , Th17 Cells/immunology , Transcription, Genetic , Transcriptome
8.
J Immunol ; 193(9): 4485-96, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25267973

ABSTRACT

To determine the breadth and underpinning of changes in immunocyte gene expression due to genetic variation in mice, we performed, as part of the Immunological Genome Project, gene expression profiling for CD4(+) T cells and neutrophils purified from 39 inbred strains of the Mouse Phenome Database. Considering both cell types, a large number of transcripts showed significant variation across the inbred strains, with 22% of the transcriptome varying by 2-fold or more. These included 119 loci with apparent complete loss of function, where the corresponding transcript was not expressed in some of the strains, representing a useful resource of "natural knockouts." We identified 1222 cis-expression quantitative trait loci (cis-eQTL) that control some of this variation. Most (60%) cis-eQTLs were shared between T cells and neutrophils, but a significant portion uniquely impacted one of the cell types, suggesting cell type-specific regulatory mechanisms. Using a conditional regression algorithm, we predicted regulatory interactions between transcription factors and potential targets, and we demonstrated that these predictions overlap with regulatory interactions inferred from transcriptional changes during immunocyte differentiation. Finally, comparison of these and parallel data from CD4(+) T cells of healthy humans demonstrated intriguing similarities in variability of a gene's expression: the most variable genes tended to be the same in both species, and there was an overlap in genes subject to strong cis-acting genetic variants. We speculate that this "conservation of variation" reflects a differential constraint on intraspecies variation in expression levels of different genes, either through lower pressure for some genes, or by favoring variability for others.


Subject(s)
Gene Expression Regulation , Genetic Variation , Immunity/genetics , Mice, Inbred Strains/genetics , Mice, Inbred Strains/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Chromosome Mapping , Cluster Analysis , Computational Biology , Gene Expression Profiling , Gene Regulatory Networks , Genotype , Humans , Mice , Neutrophils/immunology , Neutrophils/metabolism , Quantitative Trait Loci , Reproducibility of Results , Transcriptome
9.
PLoS One ; 9(10): e108553, 2014.
Article in English | MEDLINE | ID: mdl-25279834

ABSTRACT

As part of the Immunological Genome Project (ImmGen), gene expression was determined in unstimulated (circulating) mouse neutrophils and three populations of neutrophils activated in vivo, with comparison among these populations and to other leukocytes. Activation conditions included serum-transfer arthritis (mediated by immune complexes), thioglycollate-induced peritonitis, and uric acid-induced peritonitis. Neutrophils expressed fewer genes than any other leukocyte population studied in ImmGen, and down-regulation of genes related to translation was particularly striking. However, genes with expression relatively specific to neutrophils were also identified, particularly three genes of unknown function: Stfa2l1, Mrgpr2a and Mrgpr2b. Comparison of genes up-regulated in activated neutrophils led to several novel findings: increased expression of genes related to synthesis and use of glutathione and of genes related to uptake and metabolism of modified lipoproteins, particularly in neutrophils elicited by thioglycollate; increased expression of genes for transcription factors in the Nr4a family, only in neutrophils elicited by serum-transfer arthritis; and increased expression of genes important in synthesis of prostaglandins and response to leukotrienes, particularly in neutrophils elicited by uric acid. Up-regulation of genes related to apoptosis, response to microbial products, NFkB family members and their regulators, and MHC class II expression was also seen, in agreement with previous studies. A regulatory model developed from the ImmGen data was used to infer regulatory genes involved in the changes in gene expression during neutrophil activation. Among 64, mostly novel, regulatory genes predicted to influence these changes in gene expression, Irf5 was shown to be important for optimal secretion of IL-10, IP-10, MIP-1α, MIP-1ß, and TNF-α by mouse neutrophils in vitro after stimulation through TLR9. This data-set and its analysis using the ImmGen regulatory model provide a basis for additional hypothesis-based research on the importance of changes in gene expression in neutrophils in different conditions.


Subject(s)
Cytokines/metabolism , Gene Expression , Neutrophil Activation/genetics , Neutrophils/metabolism , Animals , Cytokines/genetics , Mice , Transcriptional Activation , Up-Regulation
10.
Diabetes ; 63(11): 3827-34, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24917576

ABSTRACT

Mast cells have been invoked as important players in immune responses associated with autoimmune diseases. Based on in vitro studies, or in vivo through the use of Kit mutant mice, mast cells have been suggested to play immunological roles in direct antigen presentation to both CD4(+) and CD8(+) T cells, in the regulation of T-cell and dendritic cell migration to lymph nodes, and in Th1 versus Th2 polarization, all of which could significantly impact the immune response against self-antigens in autoimmune disease, including type 1 diabetes (T1D). Until now, the role of mast cells in the onset and incidence of T1D has only been indirectly tested through the use of low-specificity mast cell inhibitors and activators, and published studies reported contrasting results. Our three laboratories have generated independently two strains of mast cell-deficient nonobese diabetic (NOD) mice, NOD.Cpa3(Cre/+) (Heidelberg) and NOD.Kit(W-sh/W-sh) (Leuven and Boston), to address the effects of mast cell deficiency on the development of T1D in the NOD strain. Our collective data demonstrate that both incidence and progression of T1D in NOD mice are independent of mast cells. Moreover, analysis of pancreatic lymph node cells indicated that lack of mast cells has no discernible effect on the autoimmune response, which involves both innate and adaptive immune components. Our results demonstrate that mast cells are not involved in T1D in the NOD strain, making their role in this process nonessential and excluding them as potential therapeutic targets.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Mast Cells/cytology , Mast Cells/metabolism , Animals , Autoimmunity/physiology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Carboxypeptidases A/genetics , Carboxypeptidases A/metabolism , Female , Male , Mice , Mice, Inbred NOD
11.
Arthritis Rheumatol ; 66(1): 78-89, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24449577

ABSTRACT

OBJECTIVE: The C-type natriuretic peptide (CNP) signaling pathway is a major contributor to postnatal skeletal growth in humans. This study was undertaken to investigate whether CNP signaling could prevent growth delay and cartilage damage in an animal model of inflammatory arthritis. METHODS: We generated transgenic mice that overexpress CNP (B6.SJL-Col2a1-NPPC) in chondrocytes. We introduced the CNP transgene into mice with experimental systemic inflammatory arthritis (K/BxN T cell receptor [TCR]) and determined the effect of CNP overexpression in chondrocytes on the severity of arthritis, cartilage damage, and linear growth. We also examined primary chondrocyte cultures for changes in gene and protein expression resulting from CNP overexpression. RESULTS: K/BxN TCR mice exhibited linear growth delay (P < 0.01) compared to controls, and this growth delay was correlated with the severity of arthritis. Diminished chondrocyte proliferation and matrix production was also seen in K/BxN TCR mice. Compared to non-CNP-transgenic mice, K/BxN TCR mice with overexpressed CNP had milder arthritis, no growth delay, and less cartilage damage. Primary chondrocytes from mice overexpressing CNP were less sensitive to inflammatory cytokines than wild-type mouse chondrocytes. CONCLUSION: CNP overexpression in chondrocytes can prevent endochondral growth delay and protect against cartilage damage in a mouse model of inflammatory arthritis. Pharmacologic or biologic modulation of the CNP signaling pathway may prevent growth retardation and protect cartilage in patients with inflammatory joint diseases, such as juvenile idiopathic arthritis.


Subject(s)
Arthritis, Experimental/physiopathology , Bone Development/physiology , Cartilage, Articular/growth & development , Chondrocytes/physiology , Natriuretic Peptide, C-Type/physiology , Animals , Arthritis, Experimental/metabolism , Arthritis, Juvenile/metabolism , Arthritis, Juvenile/physiopathology , Cartilage, Articular/metabolism , Cell Differentiation , Cell Proliferation , Chondrocytes/metabolism , Mice , Mice, Transgenic , Natriuretic Peptide, C-Type/metabolism , Signal Transduction/physiology
12.
Nat Immunol ; 14(6): 619-32, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23644507

ABSTRACT

The differentiation of αßT cells from thymic precursors is a complex process essential for adaptive immunity. Here we exploited the breadth of expression data sets from the Immunological Genome Project to analyze how the differentiation of thymic precursors gives rise to mature T cell transcriptomes. We found that early T cell commitment was driven by unexpectedly gradual changes. In contrast, transit through the CD4(+)CD8(+) stage involved a global shutdown of housekeeping genes that is rare among cells of the immune system and correlated tightly with expression of the transcription factor c-Myc. Selection driven by major histocompatibility complex (MHC) molecules promoted a large-scale transcriptional reactivation. We identified distinct signatures that marked cells destined for positive selection versus apoptotic deletion. Differences in the expression of unexpectedly few genes accompanied commitment to the CD4(+) or CD8(+) lineage, a similarity that carried through to peripheral T cells and their activation, demonstrated by mass cytometry phosphoproteomics. The transcripts newly identified as encoding candidate mediators of key transitions help define the 'known unknowns' of thymocyte differentiation.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Differentiation, T-Lymphocyte/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Lineage/immunology , Cell Proliferation , Cells, Cultured , Cluster Analysis , Flow Cytometry , Histocompatibility Antigens/genetics , Histocompatibility Antigens/immunology , Histocompatibility Antigens/metabolism , Lectins, C-Type/immunology , Lectins, C-Type/metabolism , Male , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Phosphorylation/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Thymocytes/cytology , Thymocytes/immunology , Thymocytes/metabolism , Transcriptome/genetics , Transcriptome/immunology
13.
Nat Immunol ; 14(6): 633-43, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23624555

ABSTRACT

The differentiation of hematopoietic stem cells into cells of the immune system has been studied extensively in mammals, but the transcriptional circuitry that controls it is still only partially understood. Here, the Immunological Genome Project gene-expression profiles across mouse immune lineages allowed us to systematically analyze these circuits. To analyze this data set we developed Ontogenet, an algorithm for reconstructing lineage-specific regulation from gene-expression profiles across lineages. Using Ontogenet, we found differentiation stage-specific regulators of mouse hematopoiesis and identified many known hematopoietic regulators and 175 previously unknown candidate regulators, as well as their target genes and the cell types in which they act. Among the previously unknown regulators, we emphasize the role of ETV5 in the differentiation of γδ T cells. As the transcriptional programs of human and mouse cells are highly conserved, it is likely that many lessons learned from the mouse model apply to humans.


Subject(s)
Algorithms , Gene Expression Regulation/immunology , Immune System/metabolism , Transcription, Genetic/immunology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Lineage/genetics , Cell Lineage/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Gene Expression Profiling , Gene Regulatory Networks/immunology , Humans , Immune System/cytology , Mice , Oligonucleotide Array Sequence Analysis , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Repressor Proteins/genetics , Repressor Proteins/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Trans-Activators/genetics , Trans-Activators/immunology , Transcription Factors/genetics , Transcription Factors/immunology , Transcriptome/genetics , Transcriptome/immunology
14.
Arthritis Rheum ; 63(9): 2630-40, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21560115

ABSTRACT

OBJECTIVE: Susceptibility to inflammatory arthritis is determined by a complex set of environmental and genetic factors, but only a portion of the genetic effect can be explained. Conventional genome-wide screens of arthritis models using crosses between inbred mice have been hampered by the low resolution of results and by the restricted range of natural genetic variation sampled. The aim of this study was to address these limitations by performing a genome-wide screen for determinants of arthritis severity using a genetically heterogeneous cohort of mice. METHODS: Heterogeneous stock (HS) mice derive from 8 founder inbred strains by serial intercrossing (n>60), resulting in fine-grained genetic variation. With a cohort of 570 HS mice, we performed a genome-wide screen for determinants of arthritis severity in the K/BxN serum-transfer model. RESULTS: We mapped regions on chromosomes 1, 2, 4, 6, 7, and 15 that contain quantitative trait loci influencing arthritis severity at a resolution of a few megabases. In several instances, these regions proved to contain 2 quantitative trait loci: the region on chromosome 2 included the C5 fraction of complement known to be required for K/BxN serum-transfer arthritis but also contained a second adjacent quantitative trait locus, for which an intriguing candidate is Ptgs1 (Cox1). Interesting candidates on chromosome 4 included the Padi family, encoding the peptidyl arginine deiminases responsible for citrulline protein modification; suggestively, Padi2 and Padi4 RNA expression was correlated with arthritis severity in HS mice. CONCLUSION: These results provide a broad overview of the genetic variation that controls the severity of K/BxN serum-transfer arthritis and suggest intriguing candidate genes for further study.


Subject(s)
Arthritis, Experimental/genetics , Arthritis, Rheumatoid/genetics , Genetic Predisposition to Disease , Animals , Chromosome Mapping , Crosses, Genetic , Genetic Variation , Genome , Genome-Wide Association Study , Mice , Quantitative Trait Loci , Severity of Illness Index
15.
Arthritis Rheum ; 62(7): 1921-32, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20506316

ABSTRACT

OBJECTIVE: Chemokines coordinate leukocyte trafficking in homeostasis and during immune responses. Prior studies of their role in arthritis have used animal models with both an initial adaptive immune response and an inflammatory effector phase. We undertook analysis of chemokines and their receptors in the effector phase of arthritis using the K/BxN mouse serum-transfer model. METHODS: A time-course microarray analysis of serum-transferred arthritis was performed, examining ankle tissue, synovial fluid, and peripheral blood leukocytes. Up-regulation of chemokines was confirmed by quantitative reverse transcriptase-polymerase chain reaction. The functional relevance of chemokine induction was assessed by transferring serum into mice deficient in CCR1-7, CCR9, CXCR2, CXCR3, CXCR5, CX(3)CR1, CCL2, or CCL3. Further mechanistic analysis of CXCR2 involved treatment of arthritic mice with a CXCR2 antagonist, bone marrow (BM) cell transfers with CXCR2(+/-) and CXCR2(-/-) donors and recipients, flow cytometry of synovial cells, and competition experiments measuring enrichment of CXCR2-expressing neutrophils in arthritic joints of mice with mixed CXCR2(+/+) and CXCR2(-/-) BM cells. RESULTS: Gene expression profiling revealed up-regulation of the CXCR2 ligands CXCL1, CXCL2, and CXCL5 in the joint in parallel with disease activity. CXCR2(-/-) mice had attenuated disease relative to CXCR2(+/-) littermates, as did mice receiving the CXCR2 inhibitor, while deficiency of other chemokine receptors did not affect arthritis severity. CXCR2 was required only on hematopoietic cells and was widely expressed on synovial neutrophils. CXCR2-expressing neutrophils were preferentially recruited to arthritic joints in the presence of CXCR2-deficient neutrophils. CONCLUSION: CXCR2 (but not other chemokine receptors) is critical for the development of autoantibody-mediated arthritis, exhibiting a cell-autonomous role in neutrophil recruitment to inflamed joints.


Subject(s)
Arthritis, Experimental/immunology , Receptors, Interleukin-8B/deficiency , Up-Regulation , Animals , Arthritis, Experimental/genetics , Arthritis, Experimental/pathology , Chemokines/genetics , Chemokines/metabolism , Female , Gene Expression Profiling , Joints/metabolism , Joints/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Knockout , Microarray Analysis , Neutrophil Infiltration/genetics , Neutrophil Infiltration/immunology , Neutrophils/immunology , Neutrophils/pathology , Receptors, Interleukin-8B/genetics
16.
Proc Natl Acad Sci U S A ; 106(39): 16758-63, 2009 Sep 29.
Article in English | MEDLINE | ID: mdl-19805369

ABSTRACT

The immune mechanisms that provoke concomitant inflammation of synovial joints and cardiac valves in disorders such as rheumatic fever and systemic lupus erythematosus remain poorly defined. Here, we report the discovery of spontaneous endocarditis-in addition to their well-studied autoimmune arthritis-in K/BxN T cell receptor (TCR) transgenic mice. The same adaptive immune system elements were required for initiation of arthritis and endocarditis, and both diseases were dependent on autoantibodies. In contrast, the participation of key innate immune system molecules and perhaps T cells as effectors of inflammation differed between the 2 target tissues. Arthritis in K/BxN TCR transgenic mice depended primarily on complement C5 and not FcRgamma-using receptors; conversely, endocarditis depended essentially on FcRgamma receptors and not C5. Elucidating how a single systemic autoimmune disease engages distinct immune effector pathways to damage different target tissues is essential for optimizing the treatment of such disorders.


Subject(s)
Arthritis/immunology , Autoimmune Diseases/immunology , Endocarditis/immunology , Animals , Autoantibodies/immunology , Disease Models, Animal , Mice , Mice, Transgenic
17.
Arthritis Rheum ; 60(8): 2314-24, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19644878

ABSTRACT

OBJECTIVE: To test a novel self-activating viridin (SAV) prodrug that slowly releases wortmannin, a potent phosphoinositide 3-kinase inhibitor, in a model of antibody-mediated inflammatory arthritis. METHODS: The SAV prodrug was administered to K/BxN mice or to C57BL/6 (B6) mice that had been injected with K/BxN serum. Ankle thickness was measured, and histologic changes were scored after a 10-day disease course (serum-transfer arthritis). Protease activity was measured by a near-infrared imaging approach using a cleavable cathepsin-selective probe. Further near-infrared imaging techniques were used to analyze early changes in vascular permeability after serum injection, as well as neutrophil-endothelial cell interactions. Neutrophil functions were assessed using an oxidative burst assay as well as a degranulation assay. RESULTS: SAV prevented ankle swelling in mice with serum-transfer arthritis in a dose-dependent manner. It also markedly reduced the extent of other features of arthritis, such as protease activity and histology scores for inflammation and joint erosion. Moreover, SAV was an effective therapeutic agent. The underlying mechanisms for the antiinflammatory activity were manifold. Endothelial permeability after serum injection was reduced, as was firm neutrophil attachment to endothelial cells. Endothelial cell activation by tumor necrosis factor alpha was impeded by SAV, as measured by the expression of vascular cell adhesion molecule. Crucial neutrophil functions, such as generation of reactive oxygen species and degranulation of protease-laden vesicles, were decreased by SAV administration. CONCLUSION: A novel SAV prodrug proved strongly antiinflammatory in a murine model of antibody-induced inflammatory arthritis. Its activity could be attributed, at least in part, to the inhibition of neutrophil and endothelial cell functions.


Subject(s)
Androstenes/pharmacology , Arthritis, Experimental/drug therapy , Autoimmune Diseases/drug therapy , Bacteriocins/pharmacology , Endothelium, Vascular/drug effects , Immunosuppressive Agents/pharmacology , Neutrophils/drug effects , Prodrugs/pharmacology , Androstadienes/chemistry , Androstadienes/pharmacology , Androstenes/chemical synthesis , Androstenes/chemistry , Animals , Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Bacteriocins/chemical synthesis , Bacteriocins/chemistry , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cell Membrane Permeability/drug effects , Endothelium, Vascular/physiology , Immunosuppressive Agents/chemical synthesis , Immunosuppressive Agents/chemistry , Mice , Mice, Inbred BALB C , Mice, Knockout , Neutrophils/physiology , Prodrugs/chemical synthesis , Prodrugs/chemistry , Wortmannin
18.
Methods Mol Med ; 136: 269-82, 2007.
Article in English | MEDLINE | ID: mdl-17983155

ABSTRACT

Mice expressing the KRN T cell receptor transgene and the MHC class II molecule A(g7) (K/BxN mice) develop severe inflammatory arthritis, and serum from these mice causes similar arthritis in a wide range of mouse strains, owing to pathogenic autoantibodies to glucose-6-phosphate isomerase (GPI). This model has been useful for the investigation of the development of autoimmunity (K/BxN transgenic mice) and particularly of the mechanisms by which anti-GPI autoantibodies induce joint-specific imflammation (serum transfer model). In this chaper, after a summary of findings from this model system, we describe detailed methods for the maintenance of a K/BxN colony, crossing of the relevant TCR and MHC genes to other strain backgrounds, evaluation of KRN transgenic T cells, measurement of anti-GPI antibodies, induction of arthritis by serum transfer, and clinical and histological evaluation of arthritis.


Subject(s)
Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Disease Models, Animal , Mice, Transgenic , Receptors, Antigen, T-Cell , Animals , Ankle Joint/pathology , Arthritis, Rheumatoid/pathology , Autoantibodies/blood , Autoantibodies/immunology , Female , Genes, MHC Class II , Genotype , Glucose-6-Phosphate Isomerase/immunology , Male , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology
19.
J Biol Chem ; 282(51): 36782-9, 2007 Dec 21.
Article in English | MEDLINE | ID: mdl-17959606

ABSTRACT

The light-dependent regulation of chloroplast ATP synthase activity depends on an intricate but ill defined interplay between the proton electrochemical potential across the thylakoid membrane and thioredoxin-mediated redox modulation of a cysteine bridge located on the ATP synthase gamma-subunit. The abnormal light-dependent regulation of the chloroplast ATP synthase in the Arabidopsis thaliana cfq (coupling factor quick recovery) mutant was caused by a point mutation (G to A) in the atpC1 gene, which caused an amino acid substitution (E244K) in the vicinity of the redox modulation domain in the gamma-subunit of ATP synthase. Equilibrium redox titration revealed that this mutation made the regulatory sulfhydryl group energetically much more difficult to reduce relative to the wild type (i.e. raised the Em,7.9 by 39 mV). Enzymatic studies using isolated chloroplasts showed significantly lower light-induced ATPase and ATP synthase activity in the mutant compared with the wild type. The lower ATP synthesis capacity in turn restricted overall rates of leaf photosynthesis in the cfq mutant under low light. This work provides in situ validation of the concept that thioredoxin-dependent reduction of the gamma-subunit regulatory disulfide modulates the proton electrochemical potential energy requirement for activation of the chloroplast ATP synthase and that the activation state of the ATP synthase can limit leaf level photosynthesis.


Subject(s)
Aminoacyltransferases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Chloroplast Proton-Translocating ATPases/metabolism , Point Mutation , Thioredoxins/metabolism , Thylakoids/enzymology , Amino Acid Substitution , Aminoacyltransferases/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chloroplast Proton-Translocating ATPases/genetics , Cysteine/genetics , Cysteine/metabolism , Membrane Potentials/genetics , Oxidation-Reduction , Photosynthesis/physiology , Protein Subunits/genetics , Protein Subunits/metabolism , Sulfides/metabolism , Thioredoxins/genetics , Thylakoids/genetics
20.
Proc Natl Acad Sci U S A ; 102(35): 12489-94, 2005 Aug 30.
Article in English | MEDLINE | ID: mdl-16113081

ABSTRACT

In humans and in animal models, susceptibility to arthritis is under complex genetic control, reflecting influences on the immunological processes that initiate autoimmunity and on subsequent inflammatory mechanisms in the joints. The effector phases are conveniently modeled by the K/BxN serum transfer system, a robust model well suited for genetic analysis where arthritis is initiated by pathogenic Ig. Here, we mapped the genetic loci distinguishing the high-responder BALB/c vs. low-responder SJL strains. After computational modeling of potential breeding schemes, we adapted a stepwise selective breeding strategy, with a whole-genome scan performed on a limited number of animals. Several genomic regions proved significantly associated with high sensitivity to arthritis. One of these regions, on distal chr2, was centered on the interleukin 1 gene family. Quantitation of transcripts of the Il1a and Il1b candidate genes revealed a 10-fold greater induction of Il1b mRNA in BALB/c than in SJL splenocytes after injection of LPS, whereas Il1a showed much less difference. The differential activity of the Il1b gene was associated with a particular sequence haplotype of noncoding polymorphisms. The BALB/c haplotype was found in 75% of wild-derived strains but was rare among conventional inbred strains (4/33 tested, one of which is DBA/1, the prototype arthritis-susceptible strain) and was associated with vigorous Il1b responses in a panel of inbred strains. Inbred strains carrying this allele were far more responsive to serum-transferred arthritis, confirming its broad importance in controlling arthritis severity.


Subject(s)
Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Interleukin-1/genetics , Animals , Chromosome Mapping , Computer Simulation , Gene Expression , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Models, Genetic , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...